JOURNAL OF APPROXIMATION THEORY 26, 159-184 (1979)

The Trace to Closed Sets of Functions in R"
with Second Difference of Order O(h)

ALF JONSSON AND HANS WALLIN

Department of Mathematics, University of Umed, $-901 87 Umed, Sweden
Communicated by P. L. Butzer

Received October 11, 1977

0. INTRODUCTION

0.1. In this paper we generalize the classical Whitney extension theorem
to classes of functions defined in terms of second-order differences. The
Whitney extension theorem states, in a version given in [8, Chap. VI] that
every function in Lip(w, £), « > 0, may be extended to a function in
Lip(a, R™). Here F is an arbitrary closed set, and Lip(«, F)is, for0 < a < 1
(see [8, p. 176] for « > 1), the space of all functions f satisfying
[f) —f < M|x—yl* x,yeF, and | f(x)) < M, xeF, for some
constant M which may depend on f.

It is well known that in many problems in analysis the space Lip(l, R")
can be replaced in a natural way, following [12], by a somewhat larger space
which is defined by means of second differences. This larger space A,(R?) =
A(R™) consists of all continuous functions f satisfying | f(x — k) — 2f(x) +
fx+m <M|\h|, x, ke R, and | f(x)] < M, x € R* (see Definition 2.1).
We prove, for the space /I(R"), an analog to the Whitney extension theorem.
We define a space A,(F) of functions on an arbitrary closed set F
(Definition 1.1) and prove that every fe 4,(F) may be extended to a function
defined in R belonging to A(R") (Theorem 3.1). This is the analog for A(R")
of Whitney’s theorem and the main result of this paper. The converse of this
result also holds, i.e., the restriction to F of a function in A(R") belongs to
A(F). This is an immediate consequence of the definition of /A,(F) and
Proposition 2.1 below, stating that /,(F) coincides with A(R*) for F = R».
Thus A,(F) is the “trace” of A(R") to F.

A major problem is defining A,(F), since one cannot automatically use
second differences on a nonconvex set F; x — h and x 4 & may belong to F
but not x (compare also Remark 4.2). The definition of A,(F) is given in
Section 1, and in Remark 1.3 some hopefully clarifying comments to it are
given. The proof of the extension Theorem 3.1 is closely related to the proof
of the Whitney extension theorem. For a comparison beiween the two
theorems we refer to Section 3.1.
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The extension of Theorem 3.1 to classes Ay (F), k > [, k integer
(Definition 5.1), of functions defined in terms of higher-order differences
instead of second-order differences is treated in Section 5 (Theorem 5.1).

The definition of A,(F) is rather implicit, but for some sets it is possible
to give simpler (but equivalent) definitions. In Section 2 we give some
equivalent definitions of /,(F) when F = R" and in Section 4 we discuss how
these can be transferred to more general sets. In particular, we show that if F
is the closure of a Lipschitz domain in R®, then A,(F) can again be defined
by means of second differences. In this case, Theorem 3.1 may be considered
as a special case of earlier results concerning the trace of general Lipschitz
or Besov spaces A% R") to domains in R* (Corollary 4.2); see [8, p. 150]
for the definition of A% R%).

Thus Theorem 3.1 is also related to the theory of the trace of general
Lipschitz spaces A”%R?), « >0, 1 < p, ¢ < o0, and Sobolev spaces, to
domains or linear subvarieties of R” (see, e.g., [8, Chap. VI] for definitions
and such trace problems). Actually, our spaces A,(F) coincide, when F = R",
with the Lipschitz spaces A3’*(R") (see Proposition 2.1 for k = 1 and
Section 5 for k£ > 1); however, in this paper we take as elements in A,(F)
the continuous representatives of the elements in A5**(R") as defined in [6].
When « is not an integer, A>2(R") coincides with Lip(«, R*) and, conse-
quently, Whitney’s extension theorem solves the problem of determining the
trace to F of A2°(R") in this case. This is the reason why we consider the
integer case only. Our interest in the problem studied in this paper comes
from our work in [4-6]. In these papers we introduced spaces B}'%(F) for
noninteger B, 1 < p,q << oo, where F is a rather general closed set, and
proved that the spaces B3*%(F) occur as the trace to F of the classical Lipschitz
spaces APY(R")if B = a — (n — d)/p and d is the Hausdorff dimension of F.
In a forthcoming publication we shall show how spaces B}'(F) may be
defined for integers B along the lines of the present paper so that the missing
part (the case when B is an integer) of [4-6] is filled in.

Parts of the results of this paper have been presented in [9] in somewhat
weaker versions.

0.2. Notation. R"is the n-dimensional Euclidean space x = (x1, x%,..., x"),
Fis a closed set with boundary oF. d(x, F) is the distance from x to F, and
d(E, F) is the distance from the set E to F. 4,3/ (x) is the symmetrical second
difference of f with step A at x, i.e.,

A2 (x) = f(x + B) — 2f(x) + f(x — ).

j is always a multiindex, j = (Jy , /2 ... Jn)» and we use the notation

[jl=ji+jat+ - +jn and  x'=(NHr(EP)= - &"Ym
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Dif and 19 both denote the partial derivative of f corresponding to j. Df is
the gradient of £, and & Df is the scalar product ¥ ., A’ Dif. c and M denote
different constants most of the time they appear.

1. THE SPACE A(F)

Spaces A (F), k > 1, are defined in Section 5. In the definition below,
j denotes an n-dimensional multiindex of length {j|. The functions fj,,
| j1 =1, in the definition are conveniently thought of as partial derivatives
of the function f, = f;, . Actually, Whitney’s definition of ‘““derivatives” on
an arbitrary closed set is based upon conditions similar to condition (ii)
in the definition below.

DeriNiTION 1.1, Let @ > 0 and let F be a closed subset of R* Then f
belongs to the space A,(F) if there exist collections {f;,}i;i<1 , v = 1, 2,..., and
a constant M, such that for x, y € F (we put fy, = f, whenever it is convenient)

() 1 F() — fix)] < M2, ' (1.1)
L) — f()] S M25=,  p=w,jl =1, (1.2)

(i) | () =) — X =V (y)| S M27, |x—y|<a2™, (1.3)

lif=1
[ ) — i <M, [ x — y| <a2—, ljl=1, (1.9
(i) | A < M, (1.5)
Il <M, |jl=1 (1.6)

As the norm || f)] 4,(F) of f, we take infimum of all constants M, such that
conditions (i)—(iii) are satisfied for some {f;,};1<; -
The following remarks are of importance in connection with this definition.

Remark 1.1. From (i) and (iii) it follows that
LAG)] < [AG) — f + 1 F(x) — A + 1A < 2M
and that for [j| =1

| < 1fifx) — fa ()] + | fa ()]

Y. Sl = Fin| + a0l < 6 — 1 2M + M <200
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so for xeF,v = 1, 2,..., there holds

[0l <2M (.7

and
[fi()] <2My, |j| =1 (1.8)

In a similar way we can also see that it is enough to assume (1.2) for p =
v 4 1. We can also easily see that f is continuous on F if fe A,(F). This
follows from

S = A = X =) fily)

|7]=1

[fx) — O < [ f(x) — fux)] +

+| T = RO+ 1£0) = FON < 2 + o2

l9l=1

if x,yeFand | x — y| < a2~ Here the last inequality is a consequence of
(1.1), (1.3), and (1.8).

Remark 1.2, Different values on the constant a appearing in Definition 1.1
give raise to equivalent norms. To see this, let o, < a,, and denote the
corresponding norms by || - lla, and || N, - Then clearly || -I]a1 <] - ”%'

In order to deduce a converse inequality, let N be an integer such that
2¥ag, > a,, and consider the collections { g;,} given by g;, = f5,_x,v > N,
and by g;, = fi, v = 1, 2,..., N, where {f},} is a collection satisfying (i)—(iii)
in Definition 1.1 witha = g, and M = 2||f lo, - Then { g;,} satisfies (D)—(iii)
witha = 2¥a, , M = C|| fl,, (and f;, replaced by g;,), where C is a constant
depending only on », a, , and N. Thus we have|| - o, <1 - Il Na1 < Cl- Ha2 .

Remark 1.3. Tt is possible to give several equivalent definitions of A,(F)
(compare also Remark 4.5). For example, if 1 << o« << 2 and we replace (ii)
in Definition 1.1 by

=0 =Y (=AM K M2V ix —yl, x,yeF
i1 (1.9)

and

| fi(x) — i < M2V | x —yl=l Xx,yeF
(1.10)

we obtain an equivalent definition. (It is obvious that (ii) in Definition 1.1
follows from these inequalities. Conversely, if fe A4,(F) as defined in
Definition 1.1, then we may extend f by means of Theorem 3.1 and obtain a
function Efe A(R™).
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The methods used in proving Proposition 2.1 below now give us {f3,};1<
with the desired properties, since (1.9) now follows from (1.10), and (1.10)
follows from (2.5) if |x —y| <27, from (1.2) and (1.4) if 27 <
| x —y| <1, and from (1.8) if | x — y | > 1. In the middle case, take u so
that 2-#1 << | x — y| < 2= Then

| £5()) — S|
< ) = Fiul) + 1 F(9) = FuD] + 1)) — (D))
< 4M(v —_ ‘u,) + M < cM20-we-D

(cf. Remark 1.1 for the second to last estimate). Conditions (1.9) and (1.10)
together with the boundedness (1.7) and (1.8) of f;,, |j| < 1, mean that
{fihii<a € Lip(a, F) with norm in Lip(e, F) less than M2*=-1, This means
that, for 1 << a < 2, conditions (ii) and (iii) in the definition of A,(F) may be
replaced by the assumption that { f;,}1;1<1 € Lip(e, F) with norm in Lip(«, F) less
than M2*~Y_ Consequently, we get an alternative definition of A,(F) based
upon approximation with smoother functions in the class Lip(«, F), which is
in a natural way defined on an arbitrary closed set.

It is useful to have the weaker assumptions (1.3) and (1.4) instead of (1.9)
and (1.10), for example, in the proof of Proposition 4.2.

2. DIFFERENT DEFINITIONS OF /,(R")

2.1. We shall start by showing that A,(F) for F = R" coincides with the
class A(R*) of functions satisfying the following smoothness condition.

DeriNITION 2.1.  The function f belongs to the class A(R") if £ is contin-
uous on R" and for some constant M, | f(x)] < M and | 4, (x)| < M | h |
for x, he R".

The norm of f& A(R™) is the infimum of the constants .

ProposITION 2.1.  A,(R*) = A(R") with equivalent norms.

Proof. (1) Suppose that fe A(R"). Take a function ¢ € Cy*(R") such
that (x) =0 if |x] > 1, [@pdx =1, and ¢ > 0. We also assume that
o(x) = @(—x) which gives that (Digp)(x) = (Dip)(—x) if | j| = 2. Put

@rx) = rpx/r),  r >0,

and define £, by

£ = (f % d® = [f(x — D @0) dt = [F(x + 1) g (1) d.

640[26/2-5
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Then, since [ p(x) dx = 1 and @ (x) = 0if | x| > r,

260 = FE) = [ (FO+ 0+ G — 1)~ 2 polt) di

which by the assumption is less than Mr. Hence
[fix) — f)l <er, xeR" r>0. Q.10
Next we shall prove that
| Difx)l <er”,  |jl =2, xeR, r>0. (2.2)

In fact, since (Dip)(x) = (D'p)(—x) and [ Dip (x)dx =0 for |j| =2,
we get

W) = | =0+ 0+ 1) = 20 Dg )
But Dig,(t) = r—"*Dig)(t/r), |j| = 2, and so
| 2Df(%)] < J‘ M| t|rm2cdt = cr,
ltI<r
which is (2.2). We remark in passing that we also get, forxe€ R*and |j| =1,
) <M and | Dif(x) = l ff(t) Dig(x — )dt| <er . (2.3)
From (2.2) and the mean-value theorem we now obtain for [h] < r,
(xeR,r >0
[ fx + 1) — f,(x) — BDf ()| < clhPrt <er (2.4)

and
| Df(x) — Df(x +h)| <clh|rt<ec (2.5)

We finally want to prove that
| DIfr(x) — Difp (0] <eryfry,  ry>rn,xeR4|jl=1. (2:6)
In fact, by inserting suitable terms we find
| H(Df:(x) — Df (%)
S| folx + 1) — f1,(x) — hDf ()]
+ | =folx + B + £ (0) + hDf ()] + | frx + B) — fr,(x + B)]
+ 1fn(®) — fr (0
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and if we estimate the first two terms in the right-hand side by means of (2.4)
and the last two by means of (2.1) (by inserting f), we get the estimate
c(r, + ry) if | B | < ry. By taking & = r,e; , where e is the unit vector in the
xi-direction, we obtain (2.6).

In order to see that fe A,(R it is now enough to define £, by f, with
r = 2-*. The estimates (2.1)-(2.6) show that fe 4,(R") and that

Hf”Al(R") cll fllan-

(2) Conversely, let fe A;(R*) and let {f,,}1;1<1 > ¥ = 1, 2,..., be given by
Definition 1.1 (with F = R"). Then f is continuous and bounded by (1.1)
and (1.5) in Definition 1.1. Furthermore,

A2f(x) = (DX (x) — 4%£,(%) + 4a%(x) =T+ IL @7

Choose v such that 27 < | A| < 2% (if 0 < | £| < 1; otherwise it is
trivial that | 4,2f(x)| < c | h ).
From (1.1) we conclude that | 7| < ¢2 < ¢ | £ |, and from (1.3) that

1] < — 09 = )
il=1
+1f(x—h) — 1)+ Y WA <2 <clhl.

141=1

Hence, fc AR™) and || fllagn < c||f]] RID) and the proposition is proved.

Remark 2.1. In the second part of the proof we used only (1.1), (1.3},
and (1.5) to infer that fe A(R"). This means that (1.1), (1.3), and (1.5) in
Definition 1.1 imply (1.2), (1.4), and (1.6) when F = R™. This is not true for
a general F which is seen from the following example.

ExampLe. Let 0 < B < 1, and put
F={0lUfa, =22 n> 1 Ufb, = 22"+ 278 n > ).

Define f on F by f(x) = 27", x = b, and f(x) = 0 elsewhere. Then no
Efe A(R) can coincide with f on F, since a function Ef in A(R) satisfies
| Ef(x) — Ef(»)] <clx—ylllnlx—yp[]| (see [1I,p.44]), but this is
not satisfied by f on F, since | f(b,) — f(a,)| = | b, — a, |5. On the other
hand, f satisfies all conditions in Definition 1.1 except (1.2), if we define f;,
forj = 0andj = 1 by fo(x) = 0, x < b, , fo.(x) = f(x), x > b,, f1,{x) =0,
x <b,,and fi,(x) =2"2-"/8, x = a,and x = b, ,n <.

It is obvious that (1.1), (1.5), and (1.6) are satisfied, and that the inequalities
in (1.3) and (1.4) are satisfied if x,y < b, or x = a,,, ¥y = b, for some n,
which is always the situation if | x — y| <27, x,yeF.
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2.2, There are several other equivalent ways to define A(R"). We shall
state two of them. The first, given by Proposition 2.2, is of interest here,
since it is in spirit very similar to, but simpler than, our definition of 4,(R").
However, it cannot be used to define A,(F). It is more or less well known,
cf. Remark 4.3 below.

PROPOSITION 2.2. fe A(R") if and only if for every r > 0 there exists a
Sunction f, € CYR") such that for xe R" and r > 0,

[fx)] < M, (2.8)
[ Difx) < Mr, [l =2, (2.9)

and
| fe(x) — fO)l < Mr. 2.10)

Furthermore, the norm of f in A(R™) is equivalent to the infimum of the
constants M.

Proof. The “only if” part follows from the proof of Proposition 2.1
(with f, = f * @,). The “if” part follows almost exactly as in the proof of
Proposition 2.1 by using (2.7) with f, changed to f,, where r = | 2|, and
then estimating II in (2.7) by means of the mean-value theorem and (2.9).

2.3. The characterization of A(R") given by the next proposition, will be
generalized to more general sets in Section 4. It is a consequence of known
results concerning polynomial approximation.

ProposiTION 2.3. fe A(R™) if and only if f is continuous and, for some
constant M,

[fx) <M, xeRm @2.11)

and, if xo , X1 5..., X, are n -+ 1 affine independent points (in the sense that the
VECLOrS Xy — Xg » Xg — X 5.y Xn — Xo are linearly independent) and P is the
palynomial of the first degree in n variables interpolating to f at x, , Xy ..., X ,
then

[f(x) — P(x)] <M max [x;— x|, (2.12)

0<1,k<n

for all points x belonging to the convex hull K of {xy ,..., x,}. The norm of f
in A(R®) is equivalent to the infimum of the constants M.

Proof. Let p be the diameter of K, let £2 be a sphere of diameter ¢,p
containing X, and let fe A(R"). From [1] (see also [3)), it follows that there
exists a polynomial P of degree 1 such that|{ f — Pl o < w sup, || 4:% llw.c0,
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where the norm on the right is taken over x € §2 such that x — A and x A
both are in £2. Here w is a constant, depending only on n. Thus,

If = Pllo,e < cNp, (2.13)

where ¢ depends on ¢; and n, and N is the A(R%)-norm of . Consider now the
linear functional F, given by F,(g) = P, g(x), g € C(£2), where P, g is the
polynomial of degree 1 interpolating to g at x,,x;,...,%,, and let
I(g) = g(x). Then

1 f) — P )] = (e — F)f | = Iz — Fo)(f — P)|
<A+ NFDAS — P o).

If x € K, then || F, || < 1, so combined with (2.13) this gives (2.12).

In order to prove the converse we just note that if P is a first-degree
polynomial interpolating to f at n 4 1 suitable points, two of which are
x -+ hand x — A, then

| 42f ()] = | 42 (x) — 4p*P(x)| = 2| f(x) — Px)| < c|h].
This completes the proof of the proposition.

Remark. 1Instead of appealing to the results in, e.g., [1] in the proof
above, a polynomial P satisfying (2.13) may be obtained by taking P as the
first-degree Taylor polynomial of f, at, e.g., x, , where £, is as in Proposition
2.2.

In the proof of Proposition 2.3, we actually obtain (2.12) for all x in £2,
but then M depends on |} F,. ||, which depends on the shape of KX it is easy to
see that || F,, || < ¢p/p, , where p, is the diameter of the sphere inscribed in X,
and ¢ depends on ¢, and ». In particular, for n = 2 we obtain the following
result, which will be referred to later on.

Let v be fixed, 0 << v < /3, and let x,, x, , and x, be v-uniformly affine
independent in the following sense:

The angles in the triangle A with corners x, , x, and x, , are all
larger than or equal to v. (2.14)

If P is the first degree polynomial interpolating to f€ A(R™) at x4, Xy, Xa ,
then
| F(x) — P < M max | x; — x| 2.15)

0 k<2

with M depending on c, for x such that

Jmax, [x — x| < max [ x;— x|

It is easy to see that (2.15) does not hold if we omit condition (2.14).
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3. THE EXTENSION THEOREM
3.1. We shall prove the following extension theorem.

THEOREM 3.1. Let F be a closed subset of R*. Then every fc A,(F) may be
extended to a function Ef in A(R"). Furthermore, the extension can be made so
that || Ef |l azmy < c |l f]l 4,0 5 where the constant ¢ only depends on n, and so
that Ef is infinitely differentiable outside F.

Conversely, it follows from Proposition 2.1 that the restriction to F of a
function in A(R") belongs to A,(F), and the norm in A,(F) is less than a
constant times the norm in A(R*). Together with Theorem 3.1 this gives:

MAIN RESULT. The trace to F of A(R?) is A,(F).

Before going into detail, we make a brief sketch of the proof. Let f e A,(F)
be given, and let {f,};i<;, v = 1, 2, 3,..., be associated to f as in Definition
1.1. To each {f;,};<1 » we shall associate a function f, defined on R™ (see
Section 3.3). These functions £, are then put together by means of a partition
of unity on the layers

4, = {x | 2-¢ < d(x, F) < 2% 3.1

in the following way. Let ¢, be the nonnegative C*-functions equal to zero
outside 4,_, v 4,u 4d,,; with ¥ ¢,(x) = 1, x e €F, given by Lemma 3.1
below (% denotes complement in R"). Define Ef by

Ef(x) = i e () f(x), xe€F, and = Ef(x) =f(x),xeF.

Then Ef belongs to A(R™); this is shown in Section 3.5, the proof being based
upon a number of estimates given in Section 3.4.

This method is, as previously mentioned, closely related to the proof of
the Whitney extension theorem. Actually, at least if we used the stronger
definition in Remark 1.3, then we could use the extension operator E, used
in the Whitney extension theorem for Lip(«, F), o = 2, (see [8, p. 176]), and
define an extension Ef of fe A,(F) by

EF() =Y ou®) El{fidicr)-

Then Ef is more or less equivalent to the extension Ef sketched above.
However, the functions f, are simpler than E,({f},}1;i<), and it seems more
natural to use them in our context.
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It should be noted that if we use the definition of 4,(F) given in Remark 1.3
and the extension Ef, then the proof of Theorem 3.1 may be shortened
considerably. The estimates corresponding to those in Lemma 3.2 and
Lemma 3.3 may then be derived from Stein’s version in [8] of the Whitney
extension theorem (cf. [9] and the proof of Proposition 4.1 below).

Thus, our main contribution with Theorem 3.1 to the theory of extension
of functions, seems to be how to define A,(F), letting the definition of Ef
on the distance of magnitude 2 from F be based upon the approximation
{fihica of f, and maybe also the use of the weak assumption (ii) in
Definition 1.1 (cf. Remark 1.3).

For simple sets F it is of course possible to use simpler extension operators.
For instance, if fe A(R") and u(x,y) = (P, xf)(x), xe R*, y >0, ie.,
(x, ») € R, denotes the Poisson integral of f, then the second difference
A;2u(x, y) is O(k) in R, Furthermore, straightforward computations show
that the extension of f defined by

f“(x,y):u<x,y)~yﬁ‘i(g—y’i) for y > 0

and by reflection, f(x, y) = f(x, —y) for y < 0, belongs to A(R™1).

3.2. When we define the extension Ef in Section 3.3, we shall use some
partitions of unity, which we describe in this section.

LeMMA 3.1. Let F be a closed set, and let A, be given by (3.1). Then there
exist functions @,, v = ..., —2, —1,0, 1, 2,..., such that ¢,€ C*, ¢, =0,
p(x) =0ifx¢d, ;vd,vd,,, Y ¢(x)=1if xc¥F, and for all j,

[ @i(x)] < c2vVi (3.2)
where c is a constant only depending on j and n.

Proof. Let ¢ be a nonnegative function in C*(R") supported by
{x|| x| < 1}with [ p dx = 1, and define g, by p,(x) = 2""¢(2"x). Then ¢, is
supported by {x||x| <27}, [¢,dx =1, and | ¢{’(x)] < 22"+1IDM;,

where M; = max | ¢ [,
Now, let g, be defined by g,(x) = 1 if

22—+l 2—v+3) < d(x’ F) = 2 + 2—(+3)

and g,(x) = 0 elsewhere, and 4, by

hi(x) = [(0) puualx — 1)t
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Then from the above mentioned properties of ¢,, we easily obtain that
h,=1ifxed,, h, =0ifx¢d,_,v4,0Ud,,, and that

v+3

| K(x)| = Ug"(t) QU (x — £) dt | < M2+ mtli=tiding,

where w,, is the volume of the n-dimensional unit sphere. So we have
[ B < e2717), (3.3)

where ¢ depends on j and ».

Finally, put ¢, = A,/3) & . Then ¢, satisfies the conditions of the lemma;
apart from condition (3.2) this is immediate. To realize that (3.2) holds, we
putg = Y h; . Then (g¢,)! = A, and it follows that ¢/g is the sum of A¢"
and terms of type cgoV?), where j, + j, = j, j; # 0. If we now assume
that (3.2) is proved for |j| <k, it is easy to obtain, for |j| = k, that
| 9P | < 2791, from which (3.2) follows, since g > 1, xe%F. This
concludes the proof of Lemma 3.1.

Next we turn to the definition of a family {¢,;} of functions which will
be needed in Section 3.3. For fixed v, the functions ¢,;, 7 = 1, 2,..., form a
partition of unity based upon certain cubes Q,;, which are obtained as
follows. Divide R* into closed cubes with sides of length 2~ parallel to the
axes in such a way that the vertices of the cubes have coordinates of the
form m2~>, where m is an integer. Denote these cubes by Q,;,i = 1, 2, 3,... .
In order to define the functions ¢, , let Q and (1 + €)@ denote the cubes
centered at the origin with sides parallel to the axes of length 1 and ! + ¢,
respectively. Let 0 < € < 2, and let s be a C*-function satisfying 0 < 4 < 1,
(x) =1if xe Q, and (x) = 0 if x ¢ (1 + €)Q. Denote the center of Q,;
by x,;, and define #,; by $,{x) = $(2"(x — x,;)). Finally, put ¢, =
$,:/> . Then it is easily seen that the functions ¢,, have the following
properties: 0 < ¢,; << 1, ¢,4(x) = 0if x belongs to a cube Q,,, not touching
Q.i s 21 ¢,i(x) = 1 and (cf. the proof of (3.2))

o)l <2, w,i=1,2,3,., G4

where the constant ¢ depends only on j and ».

3.3. The extension Ef. Let fe 4;(F) be given, and associate {f;,};i<t »
v =1,2,3,.., to f as in Definition 1.1 with M = 2”f”,,l(p) , and put

O = /o)
P y) =+ Y (x—yPfily), xeR,yeF. 3.5

13{=1
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Let Q,; and ¢,; be as defined in the end of Section 3.2, and let p,; denote a
point in F with d(p,;, Q,:) == d(F, Q,:). To {fi,}151<; We now associate the
function f, given by

f;(x) = z (pvi(x) Pv(x9 pvi)a X € R"

Next let {@,(x)} be the partition of unity given by Lemma 3.1. We define the
extension Ef of f by

H@=3 p@i0), xceF,

= f(x), xekF.

It is obvious from the definition that Ef is infinitely differentiable outside F.
In the Sections 3.4 and 3.5 we show that Ef € A,(R"). Actually it will follow
from our proof that || Ef(l4 z» < ¢, where the constant c is independent of f
and F as long as || f]| am = L. This enables us to conclude that in general
i Ef||A1(R,.) <c |1f||A1(F) , where ¢ is independent of fand F.

3.4. In this section we derive estimates on f, and Ef, from which it will
casily follow that Efe A,(R?). In order to make these estimates easier to
survey, we state them in a series of lemmas. However, we first note a couple
of facts, which will be used repeatedly below.

Let P(x, y) be given by (3.5). Then for x € R, g, r € F, we have (cf,, e.g.,

8, p. 177])

Pu(xa q) - Pv(x1 r) "_—f;(q) - Pv(q’ r) + Z (f;v(q) _f;'v(r))(x - q)]

1i=1

Consequently, since we assume that {f;,}|;1; satisfies (ii) in Definition 1.1,
we have

| P(x,q) — Px,r)l <c27 if |g—ri<a2™ |x—gq|<a2
(3.6)

and also
) =il <c  if [g—r|<a2™, |jl=1, 37

where the constant a may be taken arbitrarily large by Remark 1.2.
We shall also need the following estimate. Let x € Q,,,, where Q,,, is a
cube touching @, . Then it is easy to realize that

| x —pui| <2022~ + d(Q,;, F)
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and that
d(Q.i, F) < d(x, Q,) + d(x, F) < n'?2~ + d(x, F).
This gives
[ X —pi| <dx,F)+ 30?2,  Xx€Qm. (3.8

LemMa 3.2, Let d(x, F) < 2%V, Then

) [f20) <2, 1jl=2,
(ii) o) <ev,  1jl=1,
(iii) | f0)l < e

Proof. Since f(x) = ¥; ¢,i(x) PAx, p,;), we see that £¥)(x) is a sum of
terms of type

Trm(x) =}, ¢iP(x) P™(x, p,y), (3.9

where / and m are multiindices with / + m = j.

Here, clearly, P")(x,p,) = fud pss) if {m| =1, and P{"(x, p,;)) = 0 if
[m| > 1.

Now, let b € F be a point with | x — b | = d(x, F).
Since 3; ¢,; = 1, and thus 3, ¢ = 0,/ # 0, we have

Th™(x) = Z P P(P™(x, p,) — P™(x, b)), [ +#0. (3.10)

Suppose next that ¢,(x) # 0. Then, by the construction of ¢,;, x belongs
to a cube touching Q,;, and thus, by (3.8)

[x—pil <27 @ux) #0 @311
and consequently
[P — b <Ipi— x|+ 1x—~b] <27  gfx)#0. (3.12)

Consequently, using (3.4), (3.6), and (3.7) we get from (3.10) that | T>™(x)| <
2, l+m=j,|j| = 2,10, which gives part (i) of the lemma. Similarly
we get |[TP™(x)| <c, l+m=j, |jl=11#0Il+m=j|j|=1,
1 = 0, we instead combine (1.8) and (3.9) and get | T"™(x)| < cv, so we get
part (ii) of the lemma. Finally, since by (1.7) and (1.8)

P pdl <UL+ | T 6= pd fulpa| S et v <

we have | £,(x)| < ¢
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LemMA 3.3, Let d(x, F) < 2%V andv > p. Then there holds

(i) 1A = £ < 27,
() 1) —fux) <2 xeF,
(i) |fOx) —fOx) <2, |jl=1

Proof. Since Y ; p,; = 1, we have

ﬂ(x) - fu(x) = z (pvi(x) Pv(x’ pvi) - Z (Pu.k(x) Pu(x, puk)
= Z Zk (pvi(x) (Puk(x)(Pv(x’ pui) - Pu(x’ puk))

Now, by (3.11) and (i) in Definition 1.1
! Pv(x’ pvz) - Pu,(x’ pw)l

< ]f;/(pvt) _fu(pui)!
+ Z I X — Dvi Hf;v(pn) _f;u(pvz)l < c2# + €272 = Cz—“y

1il=1
if @,(x) == 0. Since, by (3.11),
lpvi—pukl < lpvi_xl + Ix—pu.kt <62_v+(:2*“ <C2—u,
if @,{x) = 0 and @, (x) 5 0, we obtain from (3.6) then that
I Pu(x, pvl) - Pu(x, puk)[ < Cz_u-
These estimates clearly give | P,(x, p,;) — P.(x, p.)l < 27 if @, (x) =0
and %k(?f) # 0, and since Y ; ¢,; = > ; . = 1 it follows from the expres-
sion for f,(x) — f,(x) above that part (i) of the lemma holds.
If x € F, then

109 =70 = | £ 9l = P pa)

=| T a0 @ = £ + 1) = Pul pu)|

which by parts (i) and (ii) in Definition 1.1 and (3.11) is less than ¢2—*,
Finally, for |j| = 1, we have f¥(x) — f(x) = A + T?° — T2°, where

A=Y 0,(x) POx, p,) — ¥ @u(x) POx, pu)
i k
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and T is given by (3.9). In the proof of Lemma 3.2 we saw that | 72°| < ¢
and | T?°| < ¢, and exactly as in the proof of part (i) of this lemma we get
[A] < 27,

LemMa 3.4. We have
@ |E(x)—f) <2 dx, F) <27, p>1,
(®) ENVX) < cdx, F))T, xe¥F, |j|=2,
©) JEf(x) <¢, xeR~

Proof. 1If x € F, then (a) is just statement (ii) of Lemma 3.3. If x ¢ F, say
xed,, where 7 > p + 1, we obtain since Y. ¢, = 1 (recall also the other
properties of ¢,)

I Ef(x) —fu(x)l =

3 5000 — .9

7+1

< Y aMIAW — LI <2,

y=7—1

where the last inequality is a consequence of (i) in Lemma 3.3. Thus (a) is
proved.

To prove (b), let xe 4., 7 = 2. (If = < 0, then (b) is trivial since then
Ef(x) = 0 in 4, and the cases 7 = 0 and 7 = 1 are treated in a straight-
forward manner.) If |j| = 2, then (Ef)* is a sum of terms of type
Y ¢(x) f9-D(x). These are estimated by means of (i) of Lemma 3.2 if / = 0
and after subtracting £/ 7"(x), by means of (3.2) and (i) and (iii) of Lemma 3.3
if/ > 0. One immediately obtains |(Ef)?(x)| < ¢27,x € 4, , which proves (b).

Finally, (c) is a consequence of (iii) of Lemma 3.2.

3.5. Ttis now easy to prove that Ef € A(R"). We shall prove that | Ef | <,
which is just statement (c) of Lemma 3.4, and that

| LHEf)X) < c|h]. (3.13)

1t is enough to prove (3.13) for, say, | A| < 1/16, since if | A | > 1/16, then
(3.13) is a consequence of | Ef| < ¢. In order to prove (3.13) we consider
two cases.

Case 1. d(x,F) > 2| h|. Then Ef is infinitely differentiable in a neigh-
borhood of the line segment L between x — h and x + #, and we obtain
from the mean-value theorem and (b) of Lemma 3.4 that

| WEN)X)] < el hMdL, F)}? <c|h|
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Case 2. d(x,F) < 2| h|. Choose u so that
2702 < d(x, F)+ | h| <21,
From part (a) of Lemma 3.4 Qe obtain
| HEF)(x) — D)) < 2 <l hl,

where the last inequality is a consequence of 242 <{ 3| h|. From the
mean-value theorem and part (i) of Lemma 3.2 we get

| 425 (x) <celh22¢ <c|hl

This proves (3.13).

In order to prove that Ef is continuous, let x € F and take y € R* with
| x — y| < 2-+D, Then, by (a) of Lemma 3.4, the mean-value theorem,
and (ii) of Lemma 3.2,

| Ef(x) — Ef (D) < 27 + [ L) — £u(»)] < e27 + cp2™

Thus, Efis continuous at x, and since it is obvious from the definition of Ef
that Ef is continuous outside F, we get that Ef is continuous in R",

4. APPLICATIONS

The aim of this section is to consider some other possible definitions of
A,(F) and to investigate whether they coincide with our Definition 1.1.
In case of coincidence we get by means of Theorem 3.1 other characterizations
of the restriction to F of the class A(R"). In this way we get (Corollary 4.2)
a new proof of a well-known result.

4.1. We shall consider a set FC R" with boundary given by x" =
P(xL,..., x*1), where x = (x%,..., x*) and ¢ € Lip,(M), i.e.,
L) — () < M|t—1t'| for ¢t eRL

ProrosITION 4.1. Let € Lip,(M) and let F be given by F = {x € R™:
x" = P(xt,..., x* O}, Then fe A(F) if f is continuous on F and, for some
constant M, ,

[f®) <My, x€F @“4.1)
| ()] < Myl k|, (4.2)

when the line segment between x — h and x + h lies entirely in F. Moreover,
the norm of fin A,(F) is less than cM, where ¢ depends only on the dimension n
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and the Lipschitz constant M. Conversely, if f€ A,(F), then (4.1) and (4.2) are
Satisﬁed WIth Ml < c ”'f“AI(F) .

Remark 4.1. From the proof it will follow that in order to prove that
fe A,(F)it is enough to assume that (4.1) and (4.2) are true with F changed
to the interior of F.

Remark 4.2. The alternative characterization of 4,(F) given in Propo-
sition 4.1 is, of course, simpler and more satisfactory than our original
definition of 4,(F). For general closed sets F it is, however, not true that A,(F)
consists of all continuous bounded functions on F satisfying

| (X)) < My | R if x, x4+ h x—heF. 4.2)

In fact, take any set F such that the three points x, x — A, and x + A, where
h # 0, never belong to F simultaneously. The subset of R! consisting of zero
and the points 3%, k = 1, 2,..., is such a set. Then (4.2') is automatically
satisfied and 4,(F) does not contain all bounded continuous functions on F
since every f'e A,(F) can be extended to a function Ef € A(R") which satisfies
| Ef(x) — Ef(y)l <c|lx—y|-|In]jx —y]|| (see the example in Remark
2.1).

In the proof we shall use the following lemma which is a special case of
Whitney’s extension theorem (see [10] or [8, Chap. VI, Theorem 4]).

LemMA 4.1. Let{ g}1<1 , withg'® = g, be defined on a closed set G C R®
so that, for some constant My and for all x, ye G, |j] < 1,

|89 — ¥ =GN < Myl x—y P, (@3)
i+

18900 < Mo, . 4.4

Then g = g can be extended to a function g € CY(R™) with the given functions
g%, 1j| = 1, as the partial derivatives of g on G, such that (4.3) and (4.4) are
true for all x, y € R* (with g9, | j | = 1, denoting the partial derivatives of g)
if M, is replaced by cM, , where c depends only on the dimension n.

Proof of Proposition 4.1. The converse part follows, for instance, by
means of Theorem 3.1. The proof of the direct part proceeds in several
steps:

Step 1. Choose F,CF, v =1, 2,..., so that F, is equal to F translated a
distance 2~ in the positive direction of the x”-axis, i.e., the boundary oF,
is given by the equation x" = y{(x%,..., x» 1) + 2. Then it follows easily
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(draw a figure; compare [8, Lemma 2, p. 182]) from the Lipschitz condition
that, for some constant M’ > 0 depending only on the Lipschitz constant M,

x€oF, = d(x,0F) = M2, 4.5)

where d(x, 0F) denotes the distance from x to oF. Furthermore, oF, € Lip,(M),
because oF, and OF satisfy the same Lipschitz condition since OF, is a trans-
lation of oF.

Step 2. Choose ¢ as in the proof of Proposition 2.1 but with ¢(x) =0
for | x | > M’[2 where M’ is the constant in (4.5). Put ¢,(x) = 2»¢(2"x) and

LX) = (f*e)x), xeF,. (4.6)

Exactly as in the proof of Proposition 2.1 (see formula (2.2)) it is proved that
| Dif(x) < 2", xeF,, |j| =2, and hence (compare, for j = 0 and
| j1 = 1, the first inequality in (2.4) and in (2.5), respectively)

79— T = )| <e2lx -y,

i+
x’yEFV5|]‘|<I? (4‘7)

if all points of the line segment between x and y belong to F, . If some points
of this line segment lie in the complement of F,, (4.7) is still true which is
realized in the following way:

Take two points x” and y’ in F, such that (1) the line segment between x
and x’ is parallel to the x"-axis, the line between x” and y’ to the R*1-plane,
and the line between y’ and y to the x"-axis, (2) the polygon joining x, x', y’,
and y belongs to F, . The Lipschitz condition means that x’ and y’ may be
chosen so that |x — x| <¢c|x—y|, X~y |{<ec|x—y]|, and
|¥"—y| <cl|x—y]|. This gives, by means of the case when (4.7) is
already proved,

| Df(x) — Df(»)| < | Df(x) — DA + | DAE(X') — DY)
+ [ DA(Y) — DAY < 2| x —y]|.

Analogously, by the cases already proved,

|10 =13 — (x — ») DA
< LA — L) — (x — x) DA
+ 1 =A() + L) + (' — x) DA
+ 1A) = L) — (¥ = ») DY)
+ 1 = Y WDA(X) — DAY < 2" | x — p I3

i.e., (4.7)is true for all x, yc F, .
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We also note that (as in the proof of Proposition 2.1)
LA <c¢ and | Df(x)| <2, |jl=1, xeF,. (48)

Step 3. So far, the functions f, are defined (by means of (4.6)) on F,
only. We now use Lemma 4.1 for each fixed v (with G = F,, g = f¥),
and M, = ¢2*) and obtain extensions of f, from F, to functions f, € C}(R"?)

so that
(4.7) and (4.8) hold for all x, y€ R 4.9

We shall prove that f< /A,(F) by showing that the functions f; = Dif,,
171 <1, v = 1,2,..., satisfy conditions (i)~(iii} in Definition 1.1. By (4.9),
(ii) and (iii) are already verified. We shall verify (i) in Steps 4 and 5.

Step 4. Let y = x — heF, where h, |h| < 27, is a point on the
positive x"-axis such that x and x + A€ F, . Then

L) — FO)F < T A0 + 1 2/%) — 2/ ()]
+ 1 f(x + h) — fx + B + | 4 ()]
=TI+ I+ I+ 1IV.

By the mean-value theorem and (4.9), I < ¢2-*. In the same way as in the
proof of Proposition 2.1 it follows, because of (4.5), that II 4 IIT < ¢2-7.
Finally, IV < c2~ by the assumption on f, and (1.1) is proved.

We also need the estimate

A —f <2+ if dpF) <2, v>p (410

which is proved in the same way by replacing f by f, and estimating IV in the
same way as L.

. Step 5. The inequality
| Dfix) — DIf(x)] < e, if x€F, v>p, |jl=1,
is proved, using (4.10), exactly like (2.6). Thus Proposition 4.1 is proved.

CoROLLARY 4.1. Let F = DU oD where D is an open set in R™ with
boundary ©D which is minimally smooth in the sense used by Stein in
[8, Chap. VI, Sect. 3.3]. Let f be continuous on F and satisfy conditions (4.1)
and (4.2) in Proposition 4.1. Then fe A(F) with norm less than a constant
(depending on F) times M, .

The proof proceeds by means of Proposition 4.1 and the method used in
8, Chap. VI, Sect. 3.3.1]. By combining Proposition 4.1 or Corollary 4.1
with Theorem 3.1 we obtain the following classical extension theorem
[7, pp. 380-383] for the class A(R™).
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COROLLARY 4.2. Let F be as in Proposition 4.1 or Corollary 4.1. Let f be
continuous on F and satisfy (4.1) and (4.2) in Propositoin 4.1. Then f can be
extended from F to a function in A(R™) with norm less than a constant (depending
on F) times M, .

Remark 4.3. Let D be a domain of the same type as in Corollary 4.1
and A(D) the space of all continuous functions f satisfying (4.1) and (4.2)
with F replaced by D. A characterization of A(D) similar to our definition of
A,(F) may be obtained from the theory of interpolation of linear operators.
In [3] it is shown that for Lipschitz-graph domains D, the second-order
modulus of smoothness wy(8, f) is equivalent to the K-functional

K3, 1) =inf{|f — gl + 818 |=,0: g € CAD)},

where | g |w.s = SUpjjie | D [l and | + |l denotes sup-norm in D. There
are constants ¢; , ¢, > O such that for 0 << 6 < 1

a9, f) < Ky(8% f) < cawy(9, f).

This gives that a function f'belongs to A(D) if and only if for 0 < § < 1 there
exist g; € C*(D) such that for xe D

@ 1fx) — g < M3,
(i) |Digsx) < MY,  |j| =2,
(i) [fx) < M.

In particular, if D = R?, fe A(R"), and we put f, = g, where § = 2~
we directly obtain that £ and f, satisfy (1.1), (1.3), (1.4), and (1.5) in Defi-
nition 1.1. Compare also with (2.1) and (2.2) in the proof of Proposition 2.1.

4.2. In the next proposition we treat generalizations of the condition
considered in Proposition 2.3 and in (2.15) to a rather general closed set F.
We treat the case n = 2 which is already entirely typical. We shall consider
a set FC R? of the following kind. Suppose that there are constants ¢, , ¢, ,
and v, 0 < v < 7/3, so that, for every x, € Fand every v = 1, 2,..., there are
points x, , x, € F such that

€270 K x; — x| <27 i=1,2, 4.11)
and

Xg , X1 , Xy are v-uniformly affine independent in the sense (2.14).
(4.12)
(The last condition of course disappears in the R case.)

ExampLES. The sets F in Proposition 4.1 and the usual Cantor sets in R?
are of this type.

640/26/2-6
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PROPOSITION 4.2. Let F C R? be of the kind described above. Then f € A,(F)
if and only if, for all x € F and some constants M and c,

[ f)l < M, (4.13)

f() — Pl < M max | x; — x|, (4.14)
Jor maxpcico | X — X; | < ¢ MaAXggy pca | X: — Xi |, for all v-uniformly affine
independent points x,, x,, x, € F, if P is the first degree polynomial (in two
variables) interpolating to f at x,, x,, and x,. The norm of f in A,(F) is
equivalent to the infimum of the constant M in (4.13) and (4.14).

For the proof we need

LemMa 4.2. If a first degree polynomial P in two variables satisfy
| P(x)] << M at three points x,, x, , and x, satisfying (4.11) and (4.12), then

| PO <M if omax, | x — x| <27

(here ¢, depends on ¢ but not on v).

Proof. If x = x¢ + oxy — x9) -+ Blx, — xp), then
P(x) = P(xg) + a(P(x;) — P(xp)) + B(P(xg) — P(x,)),

which gives the lemma.

Proof of Proposition 4.2. The “only if” part follows from Theorem 3.1
combined with Proposition 2.3 and (2.15). In order to prove the “if” part
we subdivide, for each v = 1, 2,..., R? into a mesh M, of squares {S;,} with
sides of length 2~ parallel to the axes. We do this so that each x € R? belongs
to exactly one square in M, and so that the squares in M, are obtained by
bisecting each square in M, into four squares.

Choose a point x, = x,;,, € FN S,,, if FN S,, is nonempty, and, after
that, points x, = x;;,, € F and x, = Xx,,, € F satisfying the conditions stated
for x;, x;, x, in (4.11) and (4.12). Let P,, be the first-degree polynomial
interpolating to fat x;, = x.,, , K = 0, 1, 2, and put

fx) = PJ(x) forxeFns,,|jl <. (4.15)

The partial derivatives P{(x), | j| = 1, are constants and can be expressed
in the following way. Let x; = xj;, = X,, + 27%,, where ¢; is the unit
vector in the x’-direction. Then

Py = Pl Pulte) ey =1, (4.16)
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We shall prove that fe A,(F) by showing that {f,}, /I <1, v=1,2,..,
satisfy the conditions in Definition 1.1. (We put f, == £, .) First we note that,
by assumption (4.14), for xe FN S,,

() — L) = 1 f () — Pulx)l < €27

This gives (1.1). In order to prove (1.3) we assume that x €S, N F and
y €8y, N F. Then, by (4.15),

X)) = £ — Y x—=yYfiy)

lil=1
< | Pufx) — P + | Prolx) — Pi(¥) — (x — ) DP(p)] .

The second term on the right-hand side is zero since the polynomial Py,

is of first degree. By inserting f(x) and using (4.14) we see that the first term

is less than ¢2—7 if | x — y | < 2-*. This proves (1.3). Next we want to prove

(1.4). Again we assume that xe S;, " F,ye S, N F,and that | x — y| <2
Then, by (4.15) and (4.16) (with x, = x,;), for | j| =1,

IX) — f(») = PD(x) — Py
= (Py(x}) — Pilx0) — PI(»)
= P(P(x}) — Pl X)) + 2(Prlxe) — Pil(x)), (4.17)

since Py, | j| = 1, is constant. By (4.14), P;, and P,, differ from £, and hence
from each other, by less than ¢2-* at the points xy;, , £ = 0, 1, 2. Hence,
by Lemma 4.2, the last member of (4.17) is less than ¢, proving (1.4). The
proof of (1.2) is very similar. In fact, let xe FN S;,, N S, , v > u. Asin the
proof of (1.4) we get for | j| = 1, ‘

[fil¥) — [ = 1 Z(Pafx]) — Pru(x))) + 2(Prulxe) — Pufxo))| < 27,

proving (1.2). It remains to prove (1.5) and (1.6). We note that | f,| < ¢
since | P;, | < ¢ at x,, x;, and x, and hence at x € S;, by Lemma 4.2. This
argument and (4.16) also proves (1.6). So Proposition 4.2 is proved.

Remark 4.4. A definition of a smooth class on an arbitrary closed set F
similar to the one in (4.13) and (4.14) has been used in approximation
problems in the theory of analytic functions (Dzjadyk [2, p. 71]). For sets
FC R* this definition gives a result similar to Proposition 4.2 by the same
method of proof as above.

Remark 4.5. It is also possible to give an equivalent definition of A,(F)
for any closed set F in terms of local polynomial approximation. Denote by
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Q = Q(x,, 8) a cube with center x; and side length 8. Define A*(F) as the
set of all functions f such that for each Q@ = Q(x,, ) there is a polynomial
P, of degree <(1 such that

(1) [ f(x) — Po(x)] < M3, xe QNF,
(i) if ONF+ o and Q' NF# o, then |Pox) — Py(x) <
Mmax(8,8), xeQ@N Q'
(i) if NF = @ and @ has side length }, then | Po(x)| < M,
xeQ.

Then one can show that A*(F) = A,(F). The proof of this is similar to
the proof of Proposition 4.2. It may be noted that the conditions imposed on f
in Definition 1.1 are in a sense weaker than the conditions in the alternative
definitions of A,(F) given in this remark and in Remark 1.3, since it is easy
to verify directly, that if f € A*(F) or f satisfies the requirements in Remark 1.3
then f belongs to A,(F).

5. A MORE GENERAL FORM OF THE EXTENSION THEOREM

In this section we briefly discuss the generalization of some of the previous
results to spaces A(F), k > 1.

We first define the class 4,(R"), k > 1, k integer (cf. Definition 2.1 and,
e.g., [8, p. 145)). A function f belongs to A,(R”) if fis k — 1 times contin-
uously differentiable and | 4,9 (x)| < M |k, |j| <k — 1, x,he R*, and
9 < M, |jl <k —1, xe R*. The norm of f is infimum of the
constants M. Equivalently, f belongs to A, (R") if | 45*f(x)] < M | h |* and
[ f(x)] < M, (see [7, p. 159]). Here 4%+'f(x) denotes the difference of order
k+ 1 with step h, ie., 4 (x) = f(x+ k) — f(x) and, for k >0,
A3 (x) = AR )().

The following definition of 4,(F) is a generalization of Definition 1.1. An
element of A,(F) is a collection {f;}|;/<x—1 » Where j is a multiindex and the
functions f; may conveniently be considered as derivatives of f; . We some-
times write f for this collection. Compare also the definition of Lip(«, F),
a > 0, given in [8, p. 176].

DerFmITION 5.1. Let F be a closed subset of R*, let a > 0, let k be an
integer, k > 1, and let the functions f;, | j| << k — 1 be defined on F. Then
we say that {f;};/<.—, belongs to A,(F) if there exist collections {f},}1;i<x »
v = 1,2, 3,..., of functions defined on F such that for x, ye F

M) LX) — ()] < M2~o=ib, v > 1L, |jl <k —1,
[fi%) — fu(¥)] < M24, p=2vz=LIjl=k
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(i) flx) — Z Jixi. :(y) (x — p)'| << M2-0-liD,
L+l <k n
Ix—yl<a2vvz=11j] <k,
(ii1) [l <M,  |jl<k

As the norm | f] 4,(F) of f, we again take the infimum of all M such that the
conditions (i)-(iii) are satisfied for some {f},} ;1< -

If F = R” and {f;};1<5-1 € 4(F), then it is readily verified that fis k — 1
times differentiable, and that the functions f; are uniquely determined by f;
by means of f; = f{”. Furthermore, the analog of Proposition 2.1 holds, i.e.,
the space A,(F) as defined by Definition 5.1 is for F = R equivalent to the
classical space A,(R*), defined before Definition 5.1. The proof is similar
to the proof of Proposition 2.1, but a significant difference is that the function
f, in that proof shall be defined by

firlx) = f {(=D" 4550 f(x) + F (O} @, 0) dt.

The following theorem is our most general version of the extension
theorem.

THEOREM 5.1.  Let F be a closed subset of R™. Then every f = {f;}11<p-1 €
A (F) may be extended to a function Ef in A, (R"). Ef is an extension of f in the
Sense that the restriction to F of the partial derivative (Ef) is f; for | j| <
k — 1. Furthermore, the extension can be made so that || Ef|| A, (7 S
¢ fllar , where the constant ¢ only depends on n and k, and so that Ef is
infinitely differentiable outside F.

To prove this theorem, we use the following more general form of the
extension given in Section 3.3. Put

Px,y) = 3 5A2) ) —yy

i
P

and let ¢,; and p,; be as in Section 3. Then we define Ef by
Ef(x) =Y @M fx),xeF, and  Ef(x) = fy(x), x€F,
v=1

where £, is given by
%) = Z o) P, poo).
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We omit the proof of the fact that Ef belongs to A,(R), since the proof of

th

is in the case k = 1 already given in Section 3 is almost entirely typical

for the general case.

sh

Note however that the expression for P,(x, ¢) — P,(x, r) givenin Section 3.4
all be replaced by a more general lemma given, e.g., in [8, p. 177].
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