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0. INTRODUCTION

0.1. In this paper we generalize the classical Whitney extension theorem
to classes of functions defined in terms of second-order differences. The
Whitney extension theorem states, in a version given in [8, Chap. VI] that
every function in Lip(ex, F), ex > 0, may be extended to a function in
Lip(ex, Rn). Here F is an arbitrary closed set, and Lip(ex, F) is, for 0 < ex :.0:;; 1
(see [8, p. 176] for ex > 1), the space of all functions f satisfying
[f(x) - f(Y)1 :.0:;; M [x - Y la, x, Y EF, and 1f(x) 1 :.0:;; M, x EF, for some
constant M which may depend on f

It is well known that in many problems in analysis the space Lip(l, Rn)
can be replaced in a natural way, following [12], by a somewhat larger space
which is defined by means of second differences. This larger space Al(Rn) =
A(Rn) consists of all continuous functions f satisfying 1 f(x - h) - 2f(x) +
f(x + h)1 :.0:;; M I h I, x, hE Rn, and If(x)1 ~ M, x E Rn (see Definition 2.1).
We prove, for the space A(Rn), an analog to the Whitney extension theorem.
We define a space Al(F) of functions on an arbitrary closed set F
(Definition 1.1) and prove that everyf E Al(F) may be extended to a function
defined in Rn belonging to A(Rn) (Theorem 3.1). This is the analog for A(Rn)
of Whitney's theorem and the main result of this paper. The converse of this
result also holds, i.e., the restriction to F of a function in A(Rn) belongs to
Al(F). This is an immediate consequence of the definition of Al(F) and
Proposition 2.1 below, stating that Al(F) coincides with A(Rn) for F = Rn.
Thus Al(F) is the "trace" of A(Rn) to F.

A major problem is defining AlF), since one cannot automatically use
second differences on a nonconvex set F; x - h and x + h may belong to F
but not x (compare also Remark 4.2). The definition of Al(F) is given in
Section I, and in Remark 1.3 some hopefully clarifying comments to it are
given. The proof of the extension Theorem 3.1 is closely related to the proof
of the Whitney extension theorem. For a comparison between the two
theorems we refer to Section 3.1.
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The extension of Theorem 3.1 to classes AiF), k > 1, k integer
(Definition 5.1), of functions defined in terms of higher-order differences
instead of second-order differences is treated in Section 5 (Theorem 5.1).

The definition of A 1(F) is rather implicit, but for some sets it is possible
to give simpler (but equivalent) definitions. In Section 2 we give some
equivalent definitions of A 1(F) when F = Rn and in Section 4 we discuss how
these can be transferred to more general sets. In particular, we show that if F
is the closure of a Lipschitz domain in Rn, then A1(F) can again be defined
by means of second differences. In this case, Theorem 3.1 may be considered
as a special case of earlier results concerning the trace of general Lipschitz
or Besov spaces A:,q(Rn) to domains in Rn (Corollary 4.2); see [8, p. 150]
for the definition of A:,q(Rn).

Thus Theorem 3.1 is also related to the theory of the trace of general
Lipschitz spaces A:,q(Rn), ex > 0, 1 <; p, q <; 00, and Sobolev spaces, to
domains or linear subvarieties of Rn (see, e.g., [8, Chap. VI] for definitions
and such trace problems). Actually, our spaces Ak(F) coincide, when F = Rn,
with the Lipschitz spaces Ak',oo(Rn) (see Proposition 2.1 for k = 1 and
Section 5 for k > 1); however, in this paper we take as elements in Ak(F)
the continuous representatives of the elements in Ak',oo(Rn) as defined in [6].
When ex is not an integer, A:"oo(Rn) coincides with Lip(ex, Rn) and, conse­
quently, Whitney's extension theorem solves the problem of determining the
trace to F of A:,OO(Rn) in this case. This is the reason why we consider the
integer case only. Our interest in the problem studied in this paper comes
from our work in [4-6]. In these papers we introduced spaces B%,q(F) for
noninteger f3, 1 <; p, q < 00, where F is a rather general closed set, and
proved that the spaces B;,q(F) occur as the trace to F of the classical Lipschitz
spaces A:,q(Rn) if f3 = ex - (n - d)/p and d is the Hausdorff dimension of F.
In a forthcoming publication we shall show how spaces B;,q(F) may be
defined for integers f3 along the lines of the present paper so that the missing
part (the case when f3 is an integer) of [4-6] is filled in.

Parts of the results of this paper have been presented in [9] in somewhat
weaker versions.

0.2. Notation. Rn is the n-dimensional Euclidean space x = (xl, x 2, ••• , x n),
F is a closed set with boundary 8F. d(x, F) is the distance from x to F, and
deE, F) is the distance from the set E to F. A h

2f(x) is the symmetrical second
difference offwith step h at x, i.e.,

Ah2f(x) = f(x + h) - 2f(x) + f(x - h).

j is always a multiindex,j = (j1 ,j2 ,... ,jn), and we use the notation

and
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Dif and iii) both denote the partial derivative off corresponding to j. Df is
the gradient off, and h Dfis the scalar product Lli!=l hi Djf c and M denote
different constants most of the time they appear.

Spaces Ak(F), k > 1, are defined in Section 5. In the definition below,
j denotes an n-dimensional multiindex of length Ij I. The functions hv ,
Ij I = 1, in the definition are conveniently thought of as partial derivatives
of the function J., = fov. Actually, Whitney's definition of "derivatives" on
an arbitrary closed set is based upon conditions similar to condition (ii)
in the definition below.

DEFINITION 1.1. Let a > 0 and let F be a closed subset of Rn. Then f
belongs to the space Al(F) if there exist collections {hJljl(;l , v = 1, 2,... , and
a constant M, such that for x, y E F(we putfov = J., whenever it is convenient)

(i) I j(x) - J.,(x) I ~ M2-v,

Ihv(x) - j;,ix) I ~ M2u-
v, Jl- ~v, Ijl = I,

(1.1)

(1.2)

(ii) 1J.,(x) - J.,(y) - L (x - y)i,fJiy)1 ~ M2-v
,

lil=l

Ihv(x) - hv(Y)1 ~ M, Ix - y I ~ a2-v,

(iii) Ifl(x) I ~ M,

Ihl(X)1 ~ M, Ij 1= 1.

Ijl=l, (1.4)

(1.5)

(1.6)

As the norm IlfilA (F) of J, we take infimum of all constants M, such that
1

conditions (i)-(iii) are satisfied for some {hv}ljl(;l .
The following remarks are of importance in connection with this definition.

Remark 1.1. From (i) and (iii) it follows that

1J.,(x) I ~ I j,,(x) - j(x) I + I j(x) - ft(x) I + Ift(x) I ~ 2M

and that for Ij I = 1

I hv(x) I ~ 1hlx) - fjl(x) 1 + I.fJl(X)I

= Itz hi(X) - h(i-!)(X)/ + Ihl(X)I ~ (v - I) 2M + M ~ 2Mv
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so for x E F, v = 1,2,... , there holds

1!v(x)1:s;; 2M

and

(1.7)

IJiv(x)! :s;; 2Mv, Ij I = 1. (1.8)

In a similar way we can also see that it is enough to assume (1.2) for f.L =
v + 1. We can also easily see that f is continuous on F if fE A 1(F). This
follows from

If(x) - f(y)1 :s;; If(x) -!v(x)[ + l!v(x) - !v(y) - L (x - y)j Jiv(y)1
Ijl~1

+ I I (x - y)j Ji.(y)I+ l!v(y) - f(y)1 :s;; c2-v+ cv2-v
1i1~1

if x, y E F and I x - y I :s;; a2-v• Here the last inequality is a consequence of
(1.1), (1.3), and (1.8).

Remark 1.2. Different values on the constant a appearing in Definition 1.1
give raise to equivalent norms. To see this, let a1 < a2 , and denote the
corresponding norms by II . Iia and II . Iia . Then clearly II . Iia :s;; II . Iia .

12 1 2

In order to deduce a converse inequality, let N be an integer such that
2N a1 > a2 , and consider the collections { gjJ given by gjv = Ji,v-N , V > N,
and by gjv = Jil , V = 1,2,... , N, where {Jiv} is a collection satisfying (i)-(iii)
in Definition 1.1 with a = a1 and M = 211/lla . Then { gjv} satisfies (i)-(iii)

1

with a = 2Na1 , M = C Ilflla (andJiv replaced by gjv), where C is a constant
1

depending only on n, a1 , and N. Thus we have II . IIa
2

:s;; II '112 No, :s;; ell '11a
2

•

Remark 1.3. It is possible to give several equivalent definitions of A 1(F)
(compare also Remark 4.5). For example, if 1 < ex :s;; 2 and we replace (ii)
in Definition 1.1 by

l!v(x) - !v(y) - I (x - y)i hvCy)! :s;; M2v(a-l1 I x - y la,
Ijl~1

and

x,yEF
(1.9)

IJivCx) - /jv(Y) I :s;; M2v(a-ll I x - y la-I, x, y E F
(1.1 0)

we obtain an equivalent definition. (It is obvious that (ii) in Definition 1.1
follows from these inequalities. Conversely, if / E AiF) as defined in
Definition 1.1, then we may extend/by means of Theorem 3.1 and obtain a
function EfE A(Rn).
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The methods used in proving Proposition 2.1 below now give us {Ji.}I}I"1
with the desired properties, since (1.9) now follows from (1.10), and (1.10)
follows from (2.5) if Ix - Y I ~ 2-·, from (1.2) and (1.4) if 2-· <
I x - y I ~ 1, and from (1.8) if I x - y I > 1. In the middle case, take I-' so
that 2-lL- 1 < I x - y I ~ 2-". Then

IJilx) - Jily)1

~ IJilx) - Ji"{x)) + IJi.(y) - Ji"{Y) I + IJi"{x) - JilL(Y)I
~ 4M(v - 1-') + M ~ cM2(·-"Hoc-l)

(cf. Remark 1.1 for the second to last estimate). Conditions (1.9) and (1.10)
together with the boundedness (1.7) and (1.8) of Ji., Ij I ~ 1, mean that
{Ji.}I}I"1 E Lip(ex, F) with norm in Lip(ex, F) less than M2·(oc-ll. This means
that, for 1 < ex ~ 2, conditions (ii) and (iii) in the definition of A 1(F) may be
replaced by the assumption that {Ji.}I}I"1 E Lip(ex, F) with norm in Lip(ex, F) less
than M2·(oc-l). Consequently, we get an alternative definition of A1(F) based
upon approximation with smoother functions in the class Lip(ex, F), which is
in a natural way defined on an arbitrary closed set.

H is useful to have the weaker assumptions (1.3) and (1.4) instead of (1.9)
and (I. I 0), for example, in the proof of Proposition 4.2.

2.1. We shall start by showing that A1(F) for F = Rn coincides with the
class A(Rn) of functions satisfying the following smoothness condition.

DEFINITION 2.1. The function f belongs to the class A(Rn) iff is contin­
uous on Rn and for some constant M, If(x) I ~ M and I Ll h2f(x)I ~ M I h I
for x, h ERn.

The norm offE A(Rn) is the infimum of the constants M.

PROPOSITION 2.1. A1(Rn) = A(Rn) with equivalent norms.

Proof (1) Suppose that fE A(Rn). Take a function rp E Co"'(Rn) such
that rp(x) = 0 if I x I ? 1, f rp dx = 1, and rp ? O. We also assume that
rp(x) = rp(-x) which gives that (Dirp)(X) = (DJrp)( -x) if Ij I = 2. Put

r > 0,

and define fr by

fr(x) = (f * rpr)(x) = ff(x - t) rpr(t) dt = ff(x + t) rpr(t) dt.
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Then, since J<Pr(x) dx = 1 and <pix) = 0 if I x I :? r,

2(fr(x) - f(x» = 1 (I(x + t) + f(x - t) - 2f(x) <Pr(t) dt
Itl(r

which by the assumption is less than Mr. Hence

Ifr(x) - f(x) I ~ cr, xERn, r > o. (2.1)

Next we shall prove that

I Difr(x)! ~ c,-\ jj I = 2, x E Rfl, r > o. (2.2)

In fact, since (Di<pr)(x) = (Dicpr)( -x) and JDJ<pr(x) dx = 0 for Ij I = 2,
we get

2Difr(x) = f (I(x - t) + f(x + t) - 2f(x») Dicpr(t) dt.
J1tl(r

But DJ<pr(t) = ,-n-2(DJ<p)(tfr), Ij I = 2, and so

! 2Difr(x) I ~ f Mit I ,-n-2c dt = c,-\
J1tl(r

which is (2.2). We remark in passing that we also get, for x E Rn and \j I = 1,

Ifix) I ~ M and I DiJrCx)[ = Iff(t) Dicpix - t) dt I~ cr-I. (2.3)

From (2.2) and the mean-value theorem we now obtain for Ih I ~ r,
(x E Rn, r > 0)

Ifix + h) - frCx) - hDfix)I ~ c I h 12 ,-1 ~ cr (2.4)

and

I Df..(x) - DfrCx + h)1 ~ c [h I ,-1 ~ c.

We finally want to prove that

(2.5)

r 2 > r1 , x ERn, Ij I = 1. (2.6)

In fact, by inserting suitable terms we find

I h(Dfrl(X) - DfriX)!

~ Ifr.(x + h) - fr.(x) - hDfr.(x) [

+ ! -frlX + h) + frlx) + hDfrlx )I + [frlX + h) - fr.(x + h)1

+ Ifr.(x) - frl(X) I ,
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and if we estimate the first two terms in the right-hand side by means of (2.4)
and the last two by means of (2.1) (by inserting f), we get the estimate
c(r1 + r2) if I h I ~ '1' By taking h = 'lei, where ei is the unit vector in the
xi-direction, we obtain (2.6).

In order to see that IE A 1(Rn) it is now enough to define !v by IT with
, = 2-v• The estimates (2.1)-(2.6) show that IE A 1(Rn) and that

11/11..1
1
(RA

) ~ c 11/11..1(RA
).

(2) Conversely, let/E A 1(Rn) and let {jjJlil~l' v = 1,2,... , be given by
Definition 1.1 (with F = Rn). Then I is continuous and bounded by (Ll)
and (1.5) in Definition 1. 1. Furthermore,

Choose v such that 2-v < I h I :(:; 2-v+1 (if 0 < I h I :(:; 1; otherwise it is
trivial that I Ll,,2f(x)1 ~ c Ihi)·

From (1.1) we conclude that I II ~ c2-v ~ c I h I, and from (1.3) that

I II 1 ~ l!v(x + h) - !vex) - L hijjv(x)I
lil=l

+ \Iv(x - h) - Iv(x) + L hijjv(X)!:(:; c2-v ~ c Ihi·
li/=1

Hence,fE A(Rn) and 11/11..1(RA) :(:; c 11111..1 (RA) and the proposition is proved.
1

Remark 2.1. In the second part of the proof we used only (1.1), (1.3),
and (1.5) to infer that IE A(Rn). This means that (1.1), (1.3), and (1.5) in
Definition 1.1 imply (1.2), (1.4), and (1.6) when F = Rn. This is not true for
a general F which is seen from the following example.

EXAMPLE. Let 0 < f3 < 1, and put

F = {O} u {an = 2 . 2-n, n ~ I} U {bn = 2 ·2-n + 2-n/ fJ , n ~ I}.

Define I on F by f(x) = 2-n, x = bn and f(x) = 0 elsewhere. Then no
EIE A(R) can coincide with I on F, since a function EI in A(R) satisfies
1Ef(x) - Ef(y)1 ~ c I x - y II In I x - y II (see [11, p. 44]), but this is
not satisfied by I on F, since I f(bn) - f(an)1= I bn - an IfJ. On the other
hand, I satisfies all conditions in Definition I.l except (1.2), if we define Jiv
for j = 0 andj = 1 by fov(x) = 0, x ~ bv'/ov(x) = f(x), x > bv ,AvCx) = 0,
x ~ bv, andAv(x) = 2-n /2-n/fJ , x = an and x = bn , n < v.

It is obvious that (1.1), (1.5), and (1.6) are satisfied, and that the inequalities
in (1.3) and (1.4) are satisfied if x, y ~ bv or x = an, y = bn for some n,
which is always the situation if I x - y I ~ 2-v, x, Y EF.
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2.2. There are several other equivalent ways to define A(Rn). We shall
state two of them. The first, given by Proposition 2.2, is of interest here,
since it is in spirit very similar to, but simpler than, our definition of AI(Rn).
However, it cannot be used to define AI(F). It is more or less well known,
cf. Remark 4.3 below.

PROPOSITION 2.2. f E A(Rn) if and only if for every r > 0 there exists a
function fr E C2(Rn) such that for x E Rn and r > 0,

and

Ifr(x) I ~ M,

I DifrCx)I ~ Mr-\ [j I = 2,

IfrCx) - f(x)1 ~ Mr.

(2.8)

(2.9)

(2.10)

Furthermore, the norm of f in A(Rn) is equivalent to the infimum of the
constants M.

Proof The "only if" part follows from the proof of Proposition 2.1
(with fr = f * CPr). The "if" part follows almost exactly as in the proof of
Proposition 2.1 by using (2.7) with Iv changed to fr, where r = I h I, and
then estimating II in (2.7) by means of the mean-value theorem and (2.9).

2.3. The characterization of A(Rn) given by the next proposition, will be
generalized to more general sets in Section 4. It is a consequence of known
results concerning polynomial approximation.

PROPOSITION 2.3. f E A(Rn) if and only iff is continuous and, for some
constant M,

I f(x) I ~ M, (2.11)

and, if Xo , Xl'"'' X n are n + 1 affine independent points (in the sense that the
vectors Xl - XO , X2 - Xo ,... , Xn - Xo are linearly independent) and P is the
polynomial of the first degree in n variables interpolating to f at Xo , Xl"'" Xn ,

then

If(x) - P(X)I ~ M max [Xi - Xk I,
O<t,k:;;;;n

(2.12)

for all points X belonging to the convex hull K of {xo ,..., x n}· The norm of f
in A(Rn) is equivalent to the infimum of the constants M.

Proof Let p be the diameter of K, let Q be a sphere of diameter clP
containing K, and letfE A(Rn). From fl] (see also 13]), it follows that there
exists a polynomial Pofdegree I such that Ilf - P \\"'.0 ~ WSUPh II LJh~lloo.o,
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where the norm on the right is taken over x E Q such that x - h and x + h
both are in Q. Here w is a constant, depending only on n. Thus,

Ilf - P 11""n ~ cNp, (2.13)

where c depends on CI and n, and N is the A(Rn)-norm off Consider now the
linear functional FO) given by Fa;( g) = PI g(x), g E C(.o), where PI g is the
polynomial of degree 1 interpolating to g at xo, Xl"'" X n , and let
IO)(g) = g(x). Then

Ij(x) - Pd(x) I = 1(/0) - F",)fl = 1(1", - F",)(f - P)I

~ (l + II F", 11)(llf - P 11""n).

If x E K, then II F", II ~ 1, so combined with (2.13) this gives (2.12).
In order to prove the converse we just note that if P is a first-degree

polynomial interpolating to f at n + 1 suitable points, two of which are
x + h and x - h, then

This completes the proof of the proposition.

Remark. Instead of appealing to the results in, e.g., [1] in the proof
above, a polynomial P satisfying (2.13) may be obtained by taking P as the
first-degree Taylor polynomial off;, at, e.g., Xo , wherefp is as in Proposition
2.2.

In the proof of Proposition 2.3, we actually obtain (2.12) for all x in .0,
but then M depends on II FO) II, which depends on the shape of K; it is easy to

see that II F", II ~ cplpl' where PI is the diameter of the sphere inscribed in K,
and c depends on CI and n. In particular, for n = 2 we obtain the following
result, which will be referred to later on.

Let v be fixed, 0 < v <7T/3, and let X O , Xl' and X 2 be v-uniformly affine
independent in the following sense:

The angles in the triangle ..d with corners Xo , Xl and X 2 , are all
larger than or equal to v. (2.14)

If P is the first degree polynomial interpolating to f E A(Rn) at Xo , Xl , X2 ,

then

Ij(x) - P(x) I ~ M max I Xi - X k I
O~t,k~2

with M depending on c, for x such that

max I x - Xi I ~ c max [Xi - X k I .
0';;;1,;;;2 0';;;I,k';;;2

(2.15)

It is easy to see that (2.15) does not hold if we omit condition (2.14).
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3. TilE EXTENSION TIlEOREM

3.1. We shall prove the following extension theorem.

TIlEOREM 3.1. Let F be a closed subset ofRn. Then every f E A 1(F) may be
extended to afunction Efin A(Rn). Furthermore, the extension can be made so
that II EfIIA(Rn) ::::;; c II filA (F) , where the constant c only depends on n, and so

1

that Ef is infinitely differentiable outside F.

Conversely, it follows from Proposition 2.1 that the restriction to F of a
function in A(Rn) belongs to A 1(F), and the norm in A 1(F) is less than a
constant times the norm in A(Rn). Together with Theorem 3.1 this gives:

MAIN RESULT. The trace to F ofA(Rn) is A 1(F).

Before going into detail, we make a brief sketch of the proof. Letf E A 1(F)
be given, and let {.!1v}lil(;l , v = 1,2,3,... , be associated to f as in Definition
1.1. To each {.!1v}lil(;l, we shall associate a function iv defined on Rn (see
Section 3.3). These functions iv are then put together by means of a partition
of unity on the layers

Llv = {x I 2-(v+1) < d(x, F) ::::;; 2-v} (3.1)

in the following way. Let epv be the nonnegative COO-functions equal to zero
outside Llv-1 u Llv U Llv+l with L epvCx) = 1, x E Cf/F, given by Lemma 3.1
below (Cf/ denotes complement in Rn). Define Efby

00

Ef(x) = I ep.(x)iv(x), x E Cf/F,
v~l

and Ef(x) = f(x), X E F.

Then Efbelongs to A(Rn); this is shown in Section 3.5, the proof being based
upon a number of estimates given in Section 3.4.

This method is, as previously mentioned, closely related to the proof of
the Whitney extension theorem. Actually, at least if we used the stronger
definition in Remark 1.3, then we could use the extension operator E1 used
in the Whitney extension theorem for Lip(ex, F), ex = 2, (see [8, p. 176]), and
define an extension Ef offE A1(F) by

00

Ef(x) = I epv(X) E1({.!1v}!il(;1).
1

Then Ef is more or less equivalent to the extension Ef sketched above.
However, the functions iv are simpler than E1({Jiv}!il(;1), and it seems more
natural to use them in our context.



TRACE OF FUNCTIONS 169

It should be noted that if we use the definition of /ll(F) given in Remark 1.3
and the extension Ef, then the proof of Theorem 3.1 may be shortened
considerably. The estimates corresponding to those in Lemma 3.2 and
Lemma 3.3 may then be derived from Stein's version in [8] of the Whitney
extension theorem (cf. [9] and the proof of Proposition 4.1 below).

Thus, our main contribution with Theorem 3.1 to the theory of extension
of functions, seems to be how to define /ll(F), letting the definition of Ef
on the distance of magnitude 2-v from F be based upon the approximation
{.liv}I;I';;l of f, and maybe also the use of the weak assumption (ii) in
Definition 1.1 (cf. Remark 1.3).

For simple sets F it is of course possible to use simpler extension operators.
For instance, if fE /l(Rn) and u(x, y) = (Py * f)(x), X ERn, y > 0, i.e.,
(x, y) E R~+l, denotes the Poisson integral of f, then the second difference
J h2U(X, y) is O(h) in R~+l. Furthermore, straightforward computations show
that the extension offdefined by

- 8u(x y)
f(x, y) = u(x, y) - y 8; for y > °

and by reflection,j(x, y) = j(x, -y) for y < 0, belongs to /l(Rn+1).

3.2. When we define the extension Ef in Section 3.3, we shall use some
partitions of unity, which we describe in this section.

LEMMA 3.1. Let F be a closed set, and let J v be given by (3.1). Then there
exist functions Cflv, v = ..., -2, -1,0, 1,2,... , such that Cflv E C", Cflv ~ 0,
CflvCX) = °if x rt= J V- 1 u J v U JV+l , L CflvCX) = I if x E ~F, and for all j,

(3.2)

where c is a constant only depending on j and n.

Proof Let Cfl be a nonnegative function in C"'(Rn) supported by
{x II x I :'( I} with Jrp dx = 1, and define Cflv by CflvCX) = 2vn rp(2vx). Then Cflv is
supported by {x II x I :'( 2-v}, J Cflv dx = I, and [Cfl~il(X)1 :'( 2v(n+I;llMi ,
where M; = max I Cflli) I.

Now, let gv be defined by gvCx) = I if

2-(v+1) - 2-(v+3) < d(x, F) = 2-v + 2-(v+3)

and g.(x) = °elsewhere, and hv by
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Then from the above mentioned properties of 9Jv, we easily obtain that
hv = 1 if x E Liv , hv = 0 if x rt Ll v_ 1 V Llv V Llv+1 , and that

where w" is the volume of the n-dimensional unit sphere. So we have

(3.3)

where e depends on j and n.
Finally, put epv = hJL.k hk. Then epv satisfies the conditions of the lemma;

apart from condition (3.2) this is immediate. To realize that (3.2) holds, we
put g = L hk • Then (gepv)lil = h~;), and it follows that ep~;)g is the sum of h~;)

and terms of type eg(h)ep~j.), where A+ j2 = j, A 'f= O. If we now assume
that (3.2) is proved for Ij I < k, it is easy to obtain, for Ij I = k, that
I ep~;)g I ~ e2vl ;l, from which (3.2) follows, since g): 1, x E ~F. This
concludes the proof of Lemma 3.1.

Next we turn to the definition of a family {epvi} of functions which will
be needed in Section 3.3. For fixed v, the functions epvi, i = 1,2,... , form a
partition of unity based upon certain cubes Qvi, which are obtained as
follows. Divide R" into closed cubes with sides of length 2-v parallel to the
axes in such a way that the vertices of the cubes have coordinates of the
form m2-v, where m is an integer. Denote these cubes by Qvi , i = 1,2,3,....
In order to define the functions epvi , let Q and (l + €)Q denote the cubes
centered at the origin with sides parallel to the axes of length 1 and 1 + €,

respectively. Let 0 < € < 2, and let l/J be a C"'-function satisfying 0 ~ l/J ='( 1,
o/(x) = 1 if x E Q, and o/(x) = 0 if x ¢ (l + €)Q. Denote the center of QVi
by Xvi' and define l/Jvi by o/vi(X) = o/(2v(x - Xvi»' Finally, put epvi =

l/Jvl'£, l/Jvk . Then it is easily seen that the functions epvi have the following
properties: 0 ~ epvi ~ 1, epvi(X) = 0 if x belongs to a cube Qvm not touching
Qvi, Li CPvi(X) = 1 and (cf. the proof of (3.2»

v,i=1,2,3,oo., (3.4)

where the constant c depends only on j and n.

3.3. The extension Ef Let IE Ai(F) be given, and associate {Jiv}I;I";l ,

lJ = 1,2,3,... , to I as in Definition 1.1 with M = 2/11/1A (F), and put
1

(f" = Iov)

Pix, y) = f,,(y) + L (x - y);Jiv(Y),
Ijl~l

xER",yEF. (3.5)
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Let QVi and Cf!vi be as defined in the end of Section 3.2, and let Pvi denote a
point in F with d(Pvi , Qvi) = d(F, QVi)' To {fiv}I;I<l we now associate the
function j" given by

Next let {Cf!v(x)} be the partition of unity given by Lemma 3.1. We define the
extension EIofI by

00

Ef(x) = L 'Pv(x) iv(x),
1'=1

= f(x),

X E f{}F,

XEF.

It is obvious from the definition that EI is infinitely differentiable outside F.
In the Sections 3.4 and 3.5 we show that EIE A1(Rn). Actually it will follow
from our proof that II EIIIA (Rn) :( c, where the constant c is independent ofI

1

and F as long as II/I1A (F) = 1. This enables us to conclude that in general
1

II EIIIA (Rn) :( C 1I/11A (F) , where c is independent ofI and F.
1 1

3.4. In this section we derive estimates on iv and Ef, from which it will
easily follow that EIE A1(Rn). In order to make these estimates easier to
survey, we state them in a series of lemmas. However, we first note a couple
of facts, which will be used repeatedly below.

Let Pv(x, y) be given by (3.5). Then for x ERn, q, rEF, we have (cf., e.g.,
[8, p. 177])

Pv(x, q) - Pv(x, r) = J.,(q) - Piq, r) + L (fiiq) - fiv(r))(x - qY
lil=l

Consequently, since we assume that {fiv}I;I<l satisfies (ii) in Definition 1.1,
we have

if I q - r I :( 02-v, I x - q I < 02-v

(3.6)

and also

if I q - r I :( 02-v, Ij I = 1, (3.7)

where the constant 0 may be taken arbitrarily large by Remark 1.2.
We shall also need the following estimate. Let x E Qvm, where Qvm is a

cube touching QVi . Then it is easy to realize that

I x - Pvi 1 :( 2(n1 / 2) 2-V+ d(Qvi , F)
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and that

This gives
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d(Qvi ,F) ~ d(x, Qvi) + d(x, F) ~ n1 /22-v+ d(x, F).

I x - Pvi I ~ d(x, F) + 3(n1 / 2) 2-v,

LEMMA 3.2. Let d(x, F) ~ 2-(v-l). Then

(i) I!,,(j)(x) I ~ c2v, Ij [ = 2,

(ii) IIv(j) (x) I ~ cv, Ij I = I,

(iii) If:(x) I ~ c.

X E Qvm' (3.8)

Proof Since f.(x) = Li <Pvi(X) Pix, Pvi), we see that j.(i)(x) is a sum of
terms of type

T:,m(x) = L <p~P(x) p.(m)(x, Pvi)'
i

(3.9)

where 1and mare multiindices with I + m = j.
Here, clearly, p;m)(x,pv) =fmv(Pvi) if I m I = I, and p~m)(X,pvi) = 0 if

Im I> 1. '
Now, let b E F be a point with I x - b I = d(x, F).

Since Li <Pvi = 1, and thus Li <P~P = 0, 1 =1= 0, we have

T:,m(x) = L <p~:)(p;m)(x, Pv) - p:m)(x, b»,
i

I =1= O. (3.10)

Suppose next that <Pvi(X) =1= O. Then, by the construction of <Pvi , x belongs
to a cube touching QVi , and thus, by (3.8)

I x - Pvi I ~ c2-v, (3.11)

and consequently

IPvi ~ b I ~ IPvi - x I + I x - b I ~ c2-v, <Pvi(X) =1= O. (3.12)

Consequently, using (3.4), (3.6), and (3.7) we get from (3.10) that I T;,m(x)1 ~
c2v, 1+ m = j, Ij I = 2, 1 =1= 0, which gives part (i) of the lemma. Similarly
we get I T;,m(x) I ~ c, 1+ m = j, Ij I = 1, I =1= O. If 1+ m = j, Ij I = 1,
I = 0, we instead combine (1.8) and (3.9) and get! T;,m(x)! ~ cv, so we get
part (ii) of the lemma. Finally, since by (1.7) and (1.8)

I Pix, Pvi) I ~ Ij~(Pv;)1 + I L (x - Pvi)jhV(PVi)! ~ c + c2-Vv ~ c,
Ijl~l

we have If.(x)! ~ c.
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LEMMA 3.3. Let d(x, F) ~ 2-(v-l} and v ~ f-L. Then there holds

(i) I!.(x) -!ix)1 ~ c2-",

(ii) I f(x) - f ..(x) I ~ c2-.., x E F,

(iii) I!~j)(x) -!~i)(x)1 ~ c2v- .., Ij I = 1.

Proof Since Li CPvi = 1, we have

./.{x) - f ..(x) = L CPvi(X) Pv(x, Pvi) - L cp..ix) Pix, P..k)
i Ie

= L L CPvi(X) cp..,,(x)(Pv(x, Pvi) - p..(x, p",,».
i k

Now, by (3.11) and (i) in Definition 1.1
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! Pv(x, Pvi) - p..(x, Pvi)1

~ Ifv(Pvi) - f,,(Pvi)!

+ I I x - Pvi II.fi.(Pvi) -fiiPvi)1 ~ c2-" + c2-v2v- Il = c2-",
]jl=l

if CPvi(X) ~ 0. Since, by (3.11),

IPvi - P..k I ~ 1Pvi - x I + I x - P.." I ~ c2- + c2-" ~ c2-",

if CPvi(X) =I- °and cp..k(X) =I- 0, we obtain from (3.6) then that

These estimates clearly give I Pv(x, Pvi) - P..{x, P..,,)I ~ c2-" if CPvi(X) =I- °
and cp"k(X) =I- 0, and since Li CPvi = L" cp.." = 1 it follows from the expres­
sion for !v(x) - fix) above that part (i) of the lemma holds.

If x E F, then

If(x) -!,,(x)i = I~ cp"k(X)(f(X) - p ..(x, p.. ,,»1

= I~ cp"k(X)(f(X) - fix) + fix) - Pix, P..k»\ '

which by parts (i) and (ii) in Definition 1.1 and (3.11) is less than c2-".
Finally, for Ij I = 1, we have ni)(x) _!~i)(x) = A + T!'O - T~'o, where

" (i) " (i)A = L. CPvi(X) Pv (x, Pvi) - L. cp..,,(x) p .. (x, P..k)
i k
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and T is given by (3.9). In the proof of Lemma 3.2 we saw that I T~'o I ::;;;; e
and I T;'o I ::;;;; e, and exactly as in the proof of part (i) of this lemma we get
I A I ::;;;; e2v-".

LEMMA 3.4. We have

(a) IEf(x) - iix)I ::;;;; e2-", d(x, F) :::;;;; 2-(..+1), f.t ~ 1,

(b) I(Ef)(j)(x) I ::;;;; e(d(x, F»-l, x E reF, Ij I = 2,

(c) IEf(x) I ::;;;; e, x E Rfl.

Proof If x E F, then (a) is just statement (ii) of Lemma 3.3. If x f/: F, say
x ELI,. , where T ~ f.t + 1, we obtain since L CPv = 1 (recall also the other
properties of CPv)

I Ef(x) - i,,(x) I = If CPv(x)!.(x) - L(x)1
v=1

,.+1

::;;;; L cp.(x)1 !vex) - i,,(x)I ::;;;; c2-",
/J=T-l

where the last inequality is a consequence of (i) in Lemma 3.3. Thus (a) is
proved.

To prove (b), let x E LI,., T ~ 2. (If T < 0, then (b) is trivial since then
Ef(x) = 0 in LI,. and the cases T = 0 and T = I are treated in a straight­
forward manner.) If Ij I = 2, then (Ef)Ci) is a sum of terms of type
L cp~I)(X) nj-l)(x). These are estimated by means of (i) of Lemma 3.2 if I = 0
and after subtractingn~ll)(x),by means of (3.2) and (i) and (iii) of Lemma 3.3
if I > O. One immediately obtains I(Ef)(j)(x)1 < e2", x ELI,. , which proves (b).

Finally, (c) is a consequence of (iii) of Lemma 3.2.

3.5. It is now easy to prove that EfE A(Rn). We shall prove that I Efl ::;;;; c,
which is just statement (c) of Lemma 3.4, and that

(3.13)

It is enough to prove (3.13) for, say, Ih I < 1/16, since if Ihi> 1/16, then
(3.13) is a consequence of IEfl ::;;;; c. In order to prove (3.13) we consider
two cases.

Case 1. d(x, F) ~ 2 I h 1. Then Ef is infinitely differentiable in a neigh­
borhood of the line segment L between x - h and x + h, and we obtain
from the mean-value theorem and (b) of Lemma 3.4 that
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Case 2. d(x, F) < 2 Ih I. Choose p, so that

2-,,-2 < d(x, F) + I h 1 ~ 2-,,-1.

From part (a) of Lemma 3.4 we obtain
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where the last inequality is a consequence of 2-,,-2 ~ 3 I h [. From the
mean-value theorem and part (i) of Lemma 3.2 we get

This proves (3.13).
In order to prove that Ef is continuous, let x E F and take y E Rn with

I x - y I ,;( 2-(,,+1). Then, by (a) of Lemma 3.4, the mean-value theorem,
and (ii) of Lemma 3.2,

I Ef(x) - Ef(y)1 ~ c2-" + [j...(x) - j"'(Y)1 ~ c2-" + cp,2-".

Thus, Efis continuous at x, and since it is obvious from the definition of Ef
that Ef is continuous outside F, we get that Ef is continuous in Rn.

4. ApPLICATIONS

The aim of this section is to consider some other possible definitions of
A1(F) and to investigate whether they coincide with our Definition 1.1.
In case ofcoincidence we get by means ofTheorem 3.1 other characterizations
of the restriction to F of the class A(Rn). In this way we get (Corollary 4.2)
a new proof of a well-known result.

4.1. We shall consider a set Fe Rn with boundary given by x n =
ifi(xl, ... , x n- 1), where x = (xl, ... , x n) and ifi E Lipl(M), i.e.,

I ifi(t) - ifi(t')I ~ M [ t - t' [ for t, t' ERn-I.

PROPOSITION 4.1. Let ifi E Lipl(M) and let F be given by F = {x ERn:
x n ~ ifi(xl, ... , x n- 1)}. Then fE A 1(F) iff is continuous on F and, for some
constant M 1 ,

If(x) [ ~ M 1 , X E F,

I L1,,2f(x)1 ,;( M 1 [ h I,

(4.1)

(4.2)

when the line segment between x - h and x + h lies entirely in F. Moreover,
the norm offin A 1(F) is less than cM1 where c depends only on the dimension n



176 JONSSON AND WALLIN

and the Lipschitz constant M. Conversely, iffE A1(F), then (4.1) and (4.2) are
satisfied with M 1 ~ c II filA (F) •

1

Remark 4.1. From the proof it will follow that in order to prove that
fE A1(F) it is enough to assume that (4.1) and (4.2) are true with F changed
to the interior of F.

Remark 4.2. The alternative characterization of A1(F) given in Propo­
sition 4.1 is, of course, simpler and more satisfactory than our original
definition of A1(F). For general closed sets F it is, however, not true that A1(F)
consists of all continuous bounded functions on F satisfying

if x, x + h, x - h E F. (4.2')

In fact, take any set F such that the three points x, x - h, and x + h, where
h =1= 0, never belong to F simultaneously. The subset of Rl consisting of zero
and the points 3-\ k = 1,2,... , is such a set. Then (4.2') is automatically
satisfied and A1(F) does not contain all bounded continuous functions on F
since every f E A1(F) can be extended to a function EfE A(Rn) which satisfies
I Ef(x) - Ef(y)1 ~ c I x - y I . lIn I x - y II (see the example in Remark
2.1).

In the proof we shall use the following lemma which is a special case of
Whitney's extension theorem (see [10] or [8, Chap. VI, Theorem 4]).

LEMMA 4. I. Let { gO)}lil<;;l , with g(O) = g, be defined on a closedset G C Rn
so that, for some constant M o and for all x, y E G, Ij I ~ I,

Ig(j)(x) - I, (x - y)/ g(Hl)(y)\~Mo I x - Y \2-lil, (4.3)
IHII<;;l

I g(i)(x)j ~ Mo. (4.4)

Then g(Ol = g can be extended to afunction g E Cl(Rn) with the given functions
gO), Ij I = 1, as the partial derivatives ofg on G, such that (4.3) and (4.4) are
true for all x, y E Rn (with gO), Ij I = 1, denoting the partial derivatives of g)
ifM o is replaced by cMo , where c depends only on the dimension n.

Proof of Proposition 4.1. The converse part follows, for instance, by
means of Theorem 3.1. The proof of the direct part proceeds in several
steps:

Step 1. Choose Fv C F, v = 1,2,... , so that Fv is equal to F translated a
distance 2-v in the positive direction of the xn-axis, i.e., the boundary oF~

is given by the equation x n = ifi(xl, ... , Xn-l) + 2-v• Then it follows easily



TRACE OF FUNCTIONS 177

(draw a figure; compare [8, Lemma2, p. 182]) from the Lipschitz condition
that, for some constant M' > 0 depending only on the Lipschitz constant M,

X E oFv => d(x, of) ;? M'2-v, (4.5)

where d(x, of) denotes the distance from x to of. Furthermore, oFvE Lipl(M),
because oFv and of satisfy the same Lipschitz condition since oFv is a trans­
lation of of.

Step 2. Choose f{! as in the proof of Proposition 2.1 but with f{!(x) = 0
for I x I ;? M'/2 where M' is the constant in (4.5). Put f{!.(x) = 2vn f{!(2vx) and

f,,(x) = (f * f{!v)(x), x EFv • (4.6)

Exactly as in the proof ofProposition 2.1 (see formula (2.2)) it is proved that
IDif,,(x)I < e2v, x EFv, fj I = 2, and hence (compare, for j = 0 and
1 j I = 1, the first inequality in (2.4) and in (2.5), respectively)

If~i)(X) - L (x - y)l f~Hl)(y)1 < e2V
I x - Y 1

2
- lil ,

IHII.;;l

x,YEF.,IJI < I, (4.7)

if all points of the line segment between x and y belong to Fv • If some points
of this line segment lie in the complement of Fv , (4.7) is stilI true which is
realized in the following way:

Take two points x' and y' in F v such that (1) the line segment between x
and x' is parallel to the xn-axis, the line between x' and y' to the Rn-l-plane,
and the line between y' and y to the xn-axis, (2) the polygon joining x, x', y',
and y belongs to Fv • The Lipschitz condition means that x' and y' may be
chosen so that I x - x' I < e 1x - y I, I x' - y' I < e I x - y I, and
1y' - y I < e I x - y I. This gives, by means of the case when (4.7) is
already proved,

1 Df,,(x) - Df,,(y) I < 1 Df,,(x) - Df,,(x') I + I Df,,(x') - Df,,(y') I

+ I Df,,(y') - Df,,(y) 1 < e2v I x - y I.

Analogously, by the cases already proved,

If,,(x) - f,,(y) - (x - y) Df,,(y)1
< I f,,(x) - f,,(x') - (x - x') Df,,(x') 1

+ 1 -f,,(y') + f,,(x') + (y' - x') Df,,(x') I

+ If,,(y') - f,,(y) - (y' - y) Df,,(Y)1

+ I(x - y')(Df,,(x') - Df,,(y))1 < e2v I x - Y 12,

i.e., (4.7) is true for all x, y E F•.
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We also note that (as in the proof of Proposition 2.1)

I!v(x)I ~c and I D1.,(x)I ~c2v, Ijl = 1, xEFv' (4.8)

Step 3. So far, the functions J., are defined (by means of (4.6» on Fv
only. We now use Lemma 4.1 for each fixed v (with G = Fv , g(i) = f~),

and M o = c2v) and obtain extensions ofJ., from Fv to functions f" E C1(Rn)
so that

(4.7) and (4.8) hold for all x, y ERn. (4.9)

We shall prove that f E Al(F) by showing that the functions hv = D1., ,
Jj I ~ 1, v = 1,2,... , satisfy conditions (i)-(iii) in Definition 1.1. By (4.9),
(ii) and (iii) are already verified. We shall verify (i) in Steps 4 and 5.

Step 4. Let y = x - h E F, where h, I h I ~ c2-v, is a point on the
positive xn-axis such that x and x + h E Fv • Then

If,,(y) - f(y)1 ~ / Ll,,%(x)! + /2f,,(x) - 2f(x)/

+ If(x + h) - f,,(x + h)1 + ILl,,2f(x)I
= I + II + ill + IV.

By the mean-value theorem and (4.9), I ~ c2-V
• In the same way as in the

proof of Proposition 2.1 it follows, because of (4.5), that II + ill ~ c2-v•

Finally, IV ~ c2-V by the assumption onf, and (1.1) is proved.
We also need the estimate

jf,,(y) - f..(y) I ~ c2-" if dey, F) ~ c2-v
, v? p., (4.10)

which is proved in the same way by replacingfbyf.. and estimating IV in the
same way as I.

Step 5. The inequality

if x E F, v > p., Ij I = 1,

is proved, using (4.10), exactly like (2.6). Thus Proposition 4.1 is proved.

COROLLARY 4.1. Let F = D u aD where D is an open set in Rn with
boundary aD which is minimally smooth in the sense used by Stein in
[8, Chap. VI, Sect. 3.3]. Let f be continuous on F and satisfy conditions (4.1)
and (4.2) in Proposition 4.1. Then fE Al(F) with norm less than a constant
(depending on F) times M l .

The proof proceeds by means of Proposition 4.1 and the method used in
[8, Chap. VI, Sect. 3.3.1]. By combining Proposition 4.1 or Corollary 4.1
with Theorem 3.1 we obtain the following classical extension theorem
[7, pp. 380-383] for the class A(Rn).
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COROLLARY 4.2. Let F be as in Proposition 4.1 or Corollary 4.1. Let f be
continuous on F and satisfy (4.1) and (4.2) in Propositoin 4.1. Then f can be
extendedfrom F to afunction in A(Rn) with norm less than a constant (depending
on F) times MI •

Remark 4.3. Let D be a .domain of the same type as in Corollary 4.1
and A(D) the space of all continuous functions f satisfying (4.1) and (4.2)
with F replaced by D. A characterization of A(D) similar to our definition of
AI(F) may be obtained from the theory of interpolation of linear operators.
In [3] it is shown that for Lipschitz-graph domains D, the second-order
modulus of smoothness W2(O, f) is equivalent to the K-functional .

where Ig 100.2 = SUPli!=211 Dig 1100 and II . 1100 denotes sup-norm in D. There
are constants CI , C2 > 0 such that for 0 < °< 1

clwlo, f) :;( Klo2,j) :;( c2wlo, f).

This gives that a functionfbelongs to A(D) if and only if for 0 < °< 1 there
exist gB E C2(D) such that for XED

(i) 1lex) - gB(X) I :;( Mo,
(ii) I DigB(X) I :;( Mo-\ I j I = 2,

(iii) Il(x)1 :;( M.

In particular, if D = Rn, fE A(Rn), and we put f" = gB where °= 2-v

we directly obtain that f and f" satisfy (Ll), (1.3), (1.4), and (1.5) in Defi~

nition 1.1. Compare also with (2.1) and (2.2) in the proof of Proposition 2.1.

4.2. In the next proposition we treat generalizations of the condition
considered in Proposition 2.3 and in (2.15) to a rather general closed set F.
We treat the case n = 2 which is already entirely typical. We shall consider
a set Fe R2 of the following kind. Suppose that there are constants CI , C2 ,

and v, 0 < v < TT13, so that, for every Xo EF and every v = 1,2,... , there are
points Xl , x2 EF such that

and

i = 1,2, (4.11)

xo , Xl , X 2 are v-uniformly affine independent in the sense (2.14).
(4.12)

(The last condition of course disappears in the RI case.)

EXAMPLES. The sets F in Proposition 4.1 and the usual Cantor sets in R2
are of this type.
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PROPOSITION 4.2. Let Fe R2 be ofthe kind described above. ThenfE AI(F)
if and only if, for all x E F and some constants M and c,

Ij(X)I :s;: M,

I j(x) - P(x)j :s;: M max I Xi - Xk I ,
O~I,k~2

(4.13)

(4.14)

for maXo";i~21 x - Xi I :s;: c maxO~i,k~21 Xi - Xk I, for all v-uniformly affine
independent points Xo , Xl , X2 E F, if P is the first degree polynomial (in two
variables) interpolating to f at Xo , Xl' and X2. The norm off in AI(F) is
equivalent to the infimum of the constant M in (4.13) and (4.14).

For the proof we need

LEMMA 4.2. If a first degree polynomial P in two variables satisfy
I P(X) I ::s;: M at three points Xo , Xl' and X2 satisfying (4.11) and (4.12), then

I P(X) I ::s;: CtM if max I X - Xi I ::s;: c2-V

O~I~2

(here CI depends on c but not on v).

Proof If X = Xo + cx(xI - xo) + ~(X2 - xo), then

which gives the lemma.

Proof of Proposition 4.2. The "only if" part follows from Theorem 3.1
combined with Proposition 2.3 and (2.15). In order to prove the "if" part
we subdivide, for each v = 1,2,... , R2 into a mesh M v of squares {Si.} with
sides oflength 2-V parallel to the axes. We do this so that each X E R2 belongs
to exactly one square in M v and so that the squares in MVH are obtained by
bisecting each square in M v into four squares.

Choose a point Xo = XOiv E F n Siv, if F n Siv is nonempty, and, after
that, points Xl = Xliv E F and X2 = X2iv E F satisfying the conditions stated
for Xo , Xl' x2 in (4.11) and (4.12). Let Piv be the first-degree polynomial
interpolating to f at Xk = Xkiv , k = 0, 1, 2, and put

(4.15)

The partial derivatives Pg>(x), Ij I = 1, are constants and can be expressed
in the following way. Let x~ = X;iv = XOiv + 2-Vej, where ej is the unit
vector in the xi-direction. Then

X ERn, IJ 1= 1. (4.16)
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We shall prove that fE Al(F) by showing that {liv}, U I <; 1, v = 1,2,... ,
satisfy the conditions in Definition 1.1. (We put fov = fv .) First we note that,
by assumption (4.14), for x E F () Siv

I f(x) - fv(x) I = If(x) - Pi.(x) I <; c2-v.

This gives (1.1). In order to prove (1.3) we assume that x E Siv () F and
Y E Skv () F. Then, by (4.15),

jJ.,(x) - J.,(y) - Ij~l (x - y)i /;v(Y)1

<; I Pi.(x) - Pkv(x) I + I Pk.(x) - Pkv(Y) - (x - y) DPk.(y)! .

The second term on the right-hand side is zero since the polynomial Pkv
is of first degree. By insertingf(x) and using (4.14) we see that the first term
is less than c2-V if I x - Y I <; 2-v

• This proves (1.3). Next we want to prove
(1.4). Again we assume that x E Siv () F, Y E Skv () F, and that I x - Y I <; 2-v.

Then, by (4.15) and (4.16) (with X o = XOiv), for Ij I = 1,

/;v(x) - jj.(y) = p~~)(x) - p~](y)

= 2V(Piv(x;) - Piv(XO)) - p~](y)

= 2V(Piv(x;) - Pk.(x;)) + 2V(Pkv(xO) - Piv(XO))' (4.17)

since PJ.~), Ij I = 1, is constant. By (4.14), Piv and Pkv differ fromf, and hence
from each other, by less than c2-v at the points Xkiv, k = 0, 1,2. Hence,
by Lemma 4.2, the last member of (4.17) is less than c, proving (1.4). The
proof of (1.2) is very similar. In fact, let x E F () Siv () SklL , V > p,. As in the
proof of (1.4) we get for Ij I = 1,

I/;v(x) - k,(x) I = I 2V(Pi.(x;) - Pk...(x;)) + 2V(Pk...(XO) - Pilxo)) [ <; c2V
-

IL
,

proving (1.2). It remains to prove (1.5) and (1.6). We note that If" I <; c
since I Piv [ <; c at Xo , Xl , and X2 and hence at x E Siv by Lemma 4.2. This
argument and (4.16) also proves (1.6). So Proposition 4.2 is proved.

Remark 4.4. A definition of a smooth class on an arbitrary closed set F
similar to the one in (4.13) and (4.14) has been used in approximation
problems in the theory of analytic functions (Dzjadyk [2, p. 71]). For sets
Fe Rl this definition gives a result similar to Proposition 4.2 by the same
method of proof as above.

Remark 4.5. It is also possible to give an equivalent definition of A 1(F)
for any closed set F in terms of local polynomial approximation. Denote by
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Q = Q(xo , D) a cube with center Xo and side length D.. Define A*(F) as the
set of all functionsf such that for each Q = Q(xo , D) there is a polynomial
Po of degree <;1 such that

(i) I f(x) - Po(x) I <; MD, x E Q n F,

(ii) if Q n F =Ie 0 and Q' n F =Ie 0, then I Po(x) - Po'(x) I <;
M max(D, 8'), x E Q n Q',

(iii) if Q n F =Ie 0 and Q has side length t, then I Po(x)I <; M,
XEQ.

Then one can show that A *(F) = A1(F). The proof of this is similar to
the proof ofProposition 4.2. It may be noted that the conditions imposed onl
in Definition 1.1 are in a sense weaker than the conditions in the alternative
definitions of A1(F) given in this remark and in Remark 1.3, since it is easy
to verify directly, that ifI E A *(F) orI satisfies the requirements in Remark 1.3
then I belongs to A1(F).

5. A MORE GENERAL FORM OF THE EXTENSION THEOREM

In this section we briefly discuss the generalization of some of the previous
results to spaces Ak(F), k > I.

We first define the class Ak(Rn), k ~ I, k integer (cf. Definition 2.1 and,
e.g., [8, p. 145]). A function I belongs to Ak(Rn) ifI is k - I times contin­
uously differentiable and I L1 h2f(j)(x)I <; M Ih I, Ij 1<; k - I, x, h ERn, and
I f<il(X)1 <; M, Ij I <; k - 1. x ERn. The norm of I is infimum of the
constants M. Equivalently,jbelongs to Ak(Rn) if 1L1~+lf(x)1 <; M I h Ik anq,
If(x) I :s:; M. (see [7, p. 159]). Here L1~+lf(x) denotes the difference of ord.er
k + I with step h, i.e., L1 hlf(x) = f(x + h) - f(x) and, for k > 0,
L1~+Y(x) = L1 hl(L1 hkf)(X).

The following definition of Ak(F) is a generalization of Definition 1.1. An
element of Ak(F) is a collection {.Ii}lil<k-l , where j is a multiindex and the
functions.li may conveniently be considered as derivatives of10' We some­
times write I for this collection. Compare also the definition of Lip(lX, F),
a > 0, given in [8, p. 176].

DEFINITION 5.1. Let F be a closed subset of Rn, let a > 0, let k be an
integer, k ~ I, and let the functions.li , Ij I <; k - I be defined on F. Then
we say that {.Ii}lil<k-l belongs to Ak(F) if there exist collections {.liv}!il<k,
v = 1,2.3,.... of functions defined on F such that for x. y E F

(i) Ifj(x) - .liv(x)I <; M2-v(k-l i l),

Ijj.(x) - .Ii"{x)I :::;; M2'-'-v,

v ~ 1, Ij 1<; k - 1,

IL ~ v ~ 1, I j I = k,
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I x - y I ~ a2-v, v?,: 1, Ij I ~ k,
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(iii) Ii I ~ k.

As the norm IlfIIAk(F) off, we again take the infimum of all M such that the
conditions (i)-(iii) are satisfied for some {hv}lJl<;;k .

If F = Rn and {h}IJ[<;;k-l E AiF), then it is readily verified thatfo is k - 1
times differentiable, and that the functions h are uniquely determined by fo
by means ofh = f&J). Furthermore, the analog of Proposition 2.1 holds, i.e.,
the space Ak(F) as defined by Definition 5.1 is for F = Rn equivalent to the
classical space Ak(Rn), defined before Definition 5.1. The proof is similar
to the proof ofProposition 2.1, but a significant difference is that the function
fr in that proof shall be defined by

The following theorem is our most general version of the extension
theorem.

THEOREM 5.1. Let F be a closed subset ofRn. Then every f = {h}/JI<;;k-l E

Ak(F) may be extended to afunction Efin Ak(R"). Efis an extension offin the
sense that the restriction to F of the partial derivative (Ef)<i) is h for Ij I ~
k - 1. Furthermore, the extension can be made so that II EfllA (Rn) ~

k

C IlfIIAk(F) , where the constant c only depends on nand k, and so that Ef is
infinitely differentiable outside F.

To prove this theorem, we use the following more general form of the
extension given in Section 3.3. Put

and let fPvi and Pvi be as in Section 3. Then we define Efby

00

Ef(x) = L fPv(x)j,,(x), x E ,(/F,
v=l

where j" is given by

and Ef(x) = fo(x) , X E F,

j,,(x) = L fPvi(X) Pv(x, Pvi)'
i
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We omit the proof of the fact that Efbelongs to Ak(Rn), since the proof of
this in the case k = 1 already given in Section 3 is almost entirely typical
for the general case.

Note however that the expression for P/x, q) - P/x, r) given in Section 3.4
shall be replaced by a more general lemma given, e.g., in [8, p. 177].
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